Comparative potentiality of Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax) as lignocellulosic feedstocks for the release
详细信息    查看全文
  • 作者:Tidarat Komolwanich (1)
    Patomwat Tatijarern (1)
    Sirirat Prasertwasu (1)
    Darin Khumsupan (1)
    Thanyalak Chaisuwan (1)
    Apanee Luengnaruemitchai (1)
    Sujitra Wongkasemjit (1)
  • 关键词:Saccharum spontaneum ; Arundo donax ; Lignocellulosic biomass ; Two ; stage pretreatment ; Microwave irradiation
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:21
  • 期:3
  • 页码:1327-1340
  • 全文大小:
  • 参考文献:1. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89-05 CrossRef
    2. Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S (2012) Release of monomeric sugars from / Miscanthussinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresour Technol 103:425-31 CrossRef
    3. Chandel AK, Narasu ML, Chandrasekhar G, Manikyam A, Rao LV (2009) Use of / Saccharum / spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant / Saccharomyces / cerevisiae VS3. Bioresour Technol 100:2404-410 CrossRef
    4. Fan LT, Gharpuray MM, Lee Y-H (1987) Cellulose hydrolysis. Biotechnology monographs. Springer, Berlin, pp 3-7 CrossRef
    5. Feldman D (1985) Wood: chemistry, ultrastructure, reactions. J Polym Sci Polym Lett Edn 23(11):601-02
    6. Franscisco L, Carlos GJ, Antonio P, Javier FM, Minerva AMZ, Gil G (2010) Chemical and energetic characterization of species with a high-biomass production: Fractionation of their components. Environ Prog Sustain Energy 29(4):499-09 CrossRef
    7. García-Aparicio AP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278-88 CrossRef
    8. Gierer J (1985) Chemistry of delignification. Wood Sci Technol 19(4):289-12
    9. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10-8 CrossRef
    10. Howard RL, Abotsi E, Van Rensburg ELJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602-19
    11. Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907-913 CrossRef
    12. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38:369-78 CrossRef
    13. Intanakul P, Krairish M, Kitchaiya P (2003) Enhancement of enzymatic hydrolysis of lignocellulosic wastes by microwave pretreatment under atmospheric pressure. J Wood Chem Technol 23(2):217-25 CrossRef
    14. Jackowiak D, Frigon JC, Ribeiro T, Pauss A, Guiot S (2011) Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresour Technol 102:3535-540 CrossRef
    15. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320-26 CrossRef
    16. Leustean I (2009) Bioethanol from lignocellulosic materials. J Agroaliment Process Technol 15:94-01
    17. Li K, Fu S, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of Banana pseudostem. Bioresources 5(2):576-85
    18. Lu Y, Mosier NS (2007) Biomimetic catalysis for hemicellulose hydrolysis in corn stover. Biotechnol Prog 23:116-23 CrossRef
    19. Mansilla HD, Baeza J, Urzúa S, Maturana G, Villase?or J, Durán N (1998) Acid-catalysed hydrolysis of rice hull: evaluation of furfural production. Bioresour Technol 66:189-93 CrossRef
    20. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)2 treatments (“Overliming- on the composition and toxicity of bagasse hemicelluloses hydrolysates. Biotechnol Bioeng 69(5):526-36 CrossRef
    21. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673-86 CrossRef
    22. Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity: relating pH to biomatrix opening. New Biotechnol 27(6):739-50 CrossRef
    23. Perdue RE (1958) / Arundodonax-source of musical reeds and industrial cellulose. Econ Bot 12:368-04 CrossRef
    24. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693-700 CrossRef
    25. Sánchez óJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270-295 CrossRef
    26. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32(5):422-30 CrossRef
    27. Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from / Saccharum / spontaneum L. ssp. / aegyptiacum (Willd.) Hack. Bioresour Technol 101:5358-365 CrossRef
    28. Scordia D, Cosentino SL, Lee JW, Jeffries TW (2012) Bioconversion of giant reed ( / Arundodonax L.) hemicellulose hydrolysate to ethanol by / Scheffersomyces / stipitis / CBS6054. Biomass Bioenergy 39:296-05 CrossRef
    29. Sluiter JB, Sluiter AD et al. (2010) Summative mass closure: Laboratory Analytical Procedure (LAP) Review and Integration: Feedstocks. NREL/TP-510-48087. Golden, CO: National Renewable Energy Laboratory
    30. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206-211 CrossRef
    31. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1-1 CrossRef
    32. Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis precesses for ethanol from lignocellulosic materials: a review. Bioresources 2(3):472-99
    33. Tai PYP, Miller JD (2001) A core collection for / Saccharum / spontaneum L. from the world collection of sugarcane. Crop Sci 41:879-85 CrossRef
    34. VidalJr BC, Dien BS, Ting KC, Singh V (2011) Influence of feedstock particle size on lignocellulose conversion: a review. Appl Biochem Biotechnol 164:1405-421 CrossRef
    35. Wang B, Wang X, Feng H (2010) Deconstructing recalcitrant / Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101:752-60 CrossRef
    36. Xiong J, Ye J, Liang WZ, Fan PM (2000) Influence of microwave on the ultrastructure of cellulose I. J south china UnivTechnol 28(3):84-9
    37. Zhu S, Wu Y, Yu Z, Liao J, Zhang Y (2005) Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochem 40:3082-086 CrossRef
  • 作者单位:Tidarat Komolwanich (1)
    Patomwat Tatijarern (1)
    Sirirat Prasertwasu (1)
    Darin Khumsupan (1)
    Thanyalak Chaisuwan (1)
    Apanee Luengnaruemitchai (1)
    Sujitra Wongkasemjit (1)

    1. The Petroleum and Petrochemical College and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok, 10330, Thailand
  • ISSN:1572-882X
文摘
Two-stage microwave (microwave/NaOH pretreatment followed by microwave/H2SO4 pretreatment) was used to release monomeric sugars from Kans grass (Saccharum spontaneum) and Giant reed (Arundo donax). The optimum pretreatment conditions were investigated, and the maximum monomeric sugar yields were compared. The microwave-assisted NaOH and H2SO4 pretreatments with a 15:1 liquid-to-solid ratio were studied by varying the chemical concentration, reaction temperature, and reaction time to optimize the amount of monomeric sugars. The maximum amounts of monomeric sugars released from microwave-assisted NaOH pretreatment were 6.8?g/100?g of biomass [at 80?°C/5?min, 5?% (w/v) NaOH for S. spontaneum and at 120?°C/5?min, 5?% (w/v) NaOH for A. donax]. Furthermore, the maximum amounts of monomeric sugars released from microwave-assisted H2SO4 pretreatment of S. spontaneum and A. donax were 33.8 [at 200?°C/10?min, 0.5?% (w/v) H2SO4] and 31.9 [at 180?°C/30?min, 0.5?% (w/v) H2SO4] g/100?g of biomass, respectively. The structural changes of S. spontaneum and A. donax were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700