The Higgs mass and the scale of new physics
详细信息    查看全文
  • 作者:Astrid Eichhorn (1) (2)
    Holger Gies (3)
    Joerg Jaeckel (4)
    Tilman Plehn (4)
    Michael M. Scherer (4)
    Ren茅 Sondenheimer (3)

    1. Perimeter Institute for Theoretical Physics
    ; 31 Caroline St N ; Waterloo ; Ontario ; N2L 2Y5 ; Canada
    2. Blackett Laboratory
    ; Imperial College London ; Prince Consort Rd ; London ; SW7 2AZ ; United Kingdom
    3. Theoretisch-Physikalisches Institut
    ; Abbe Center of Photonics ; Friedrich-Schiller-Universit盲t Jena ; Max-Wien-Platz 1 ; D-07743 ; Jena ; Germany
    4. Institut f眉r Theoretische Physik
    ; Universit盲t Heidelberg ; Philosophenweg 16 ; D-69120 ; Heidelberg ; Germany
  • 关键词:Renormalization Group ; Effective field theories ; Higgs Physics ; Beyond Standard Model
  • 刊名:Journal of High Energy Physics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:2015
  • 期:4
  • 全文大小:1,253 KB
  • 参考文献:1. Higgs, PW (1964) Broken symmetries, massless particles and gauge fields. Phys. Lett. 12: pp. 132
    2. Higgs, PW (1964) Broken Symmetries and the Masses of Gauge Bosons. Phys. Rev. Lett. 13: pp. 508
    3. Higgs, PW (1966) Spontaneous Symmetry Breakdown without Massless Bosons. Phys. Rev. 145: pp. 1156
    4. Englert, F, Brout, R (1964) Broken Symmetry and the Mass of Gauge Vector Mesons. Phys. Rev. Lett. 13: pp. 321
    5. Guralnik, GS, Hagen, CR, Kibble, TWB (1964) Global Conservation Laws and Massless Particles. Phys. Rev. Lett. 13: pp. 585
    Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716: pp. 1
    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716: pp. 30
    6. Maiani, L, Parisi, G, Petronzio, R (1978) Bounds on the Number and Masses of Quarks and Leptons. Nucl. Phys. B 136: pp. 115
    7. Cabibbo, N, Maiani, L, Parisi, G, Petronzio, R (1979) Bounds on the Fermions and Higgs Boson Masses in Grand Unified Theories. Nucl. Phys. B 158: pp. 295
    8. Dashen, RF, Neuberger, H (1983) How to Get an Upper Bound on the Higgs Mass. Phys. Rev. Lett. 50: pp. 1897
    9. Callaway, DJE (1984) Nontriviality of Gauge Theories With Elementary Scalars and Upper Bounds on Higgs Masses. Nucl. Phys. B 233: pp. 189
    10. Beg, MAB, Panagiotakopoulos, C, Sirlin, A (1984) Mass of the Higgs Boson in the Canonical Realization of the Weinberg-Salam Theory. Phys. Rev. Lett. 52: pp. 883
    11. Lindner, M (1986) Implications of Triviality for the Standard Model. Z. Phys. C 31: pp. 295
    12. Kuti, J, Lin, L, Shen, Y (1988) Upper Bound on the Higgs Mass in the Standard Model. Phys. Rev. Lett. 61: pp. 678
    13. Hambye, T, Riesselmann, K (1997) Matching conditions and Higgs mass upper bounds revisited. Phys. Rev. D 55: pp. 7255
    14. Krive, IV, Linde, AD (1976) On the Vacuum Stability Problem in Gauge Theories. Nucl. Phys. B 117: pp. 265
    15. Krasnikov, NV (1978) Restriction of the Fermion Mass in Gauge Theories of Weak and Electromagnetic Interactions. Yad. Fiz. 28: pp. 549
    16. Hung, PQ (1979) Vacuum Instability and New Constraints on Fermion Masses. Phys. Rev. Lett. 42: pp. 873
    17. H.D. Politzer and S. Wolfram, / Bounds on Particle Masses in the Weinberg-Salam Model, / Phys. Lett. ass="a-plus-plus">B 82 (1979) 242 [ / Erratum ibid. ass="a-plus-plus">83B (1979) 421] [<a href="http://inspirehep.net/search?p=find+J+Phys.Lett.,B82,242" class="a-plus-plus">INSPIREa>].
    18. Linde, AD (1980) Vacuum Instability, Cosmology and Constraints on Particle Masses in the Weinberg-Salam Model. Phys. Lett. B 92: pp. 119
    19. Lindner, M, Sher, M, Zaglauer, HW (1989) Probing Vacuum Stability Bounds at the Fermilab Collider. Phys. Lett. B 228: pp. 139
    20. Ford, C, Jones, DRT, Stephenson, PW, Einhorn, MB (1993) The Effective potential and the renormalization group. Nucl. Phys. B 395: pp. 17
    21. Altarelli, G, Isidori, G (1994) Lower limit on the Higgs mass in the standard model: An update. Phys. Lett. B 337: pp. 141
    22. Plehn, T (2012) Lectures on LHC Physics. Lect. Notes Phys. 844: pp. 1
    23. Arnold, PB (1989) Can the Electroweak Vacuum Be Unstable?. Phys. Rev. D 40: pp. 613
    24. M. Sher, / Precise vacuum stability bound in the standard model, / Phys. Lett. ass="a-plus-plus">B 317 (1993) 159 [ / Addendum ibid. ass="a-plus-plus">B 331 (1994) 448] [<a href="http://arxiv.org/abs/hep-ph/9307342" class="a-plus-plus">hep-ph/9307342a>] [<a href="http://inspirehep.net/search?p=find+EPRINT+hep-ph/9307342" class="a-plus-plus">INSPIREa>].
    25. Sher, M (1989) Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept. 179: pp. 273
    26. Arnold, PB, Vokos, S (1991) Instability of hot electroweak theory: bounds on m(H) and M(t). Phys. Rev. D 44: pp. 3620
    27. Espinosa, JR, Quir贸s, M (1995) Improved metastability bounds on the standard model Higgs mass. Phys. Lett. B 353: pp. 257
    28. Casas, JA, Espinosa, JR, Quir贸s, M (1995) Improved Higgs mass stability bound in the standard model and implications for supersymmetry. Phys. Lett. B 342: pp. 171
    29. Casas, JA, Espinosa, JR, Quir贸s, M (1996) Standard model stability bounds for new physics within LHC reach. Phys. Lett. B 382: pp. 374
    30. Bergerhoff, B, Lindner, M, Weiser, M (1999) Dynamics of metastable vacua in the early universe. Phys. Lett. B 469: pp. 61
    31. Isidori, G, Ridolfi, G, Strumia, A (2001) On the metastability of the standard model vacuum. Nucl. Phys. B 609: pp. 387
    32. Arkani-Hamed, N, Dubovsky, S, Senatore, L, Villadoro, G (2008) (No) Eternal Inflation and Precision Higgs Physics. JHEP 03: pp. 075
    33. Ellis, J, Espinosa, JR, Giudice, GF, Hoecker, A, Riotto, A (2009) The Probable Fate of the Standard Model. Phys. Lett. B 679: pp. 369
    34. Elias-Miro, J, Espinosa, JR, Giudice, GF, Isidori, G, Riotto, A, Strumia, A (2012) Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709: pp. 222
    35. Lebedev, O (2012) On Stability of the Electroweak Vacuum and the Higgs Portal. Eur. Phys. J. C 72: pp. 2058
    36. Elias-Miro, J, Espinosa, JR, Giudice, GF, Lee, HM, Strumia, A (2012) Stabilization of the Electroweak Vacuum by a Scalar Threshold Effect. JHEP 06: pp. 031
    37. Degrassi, G (2012) Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08: pp. 098
    38. Alekhin, S, Djouadi, A, Moch, S (2012) The top quark and Higgs boson masses and the stability of the electroweak vacuum. Phys. Lett. B 716: pp. 214
    39. Anchordoqui, LA (2013) Vacuum Stability of Standard Model++. JHEP 02: pp. 074
    40. Masina, I (2013) Higgs boson and top quark masses as tests of electroweak vacuum stability. Phys. Rev. D 87: pp. 053001
    41. F. Bezrukov and M. Shaposhnikov, / Why should we care about the top quark Yukawa coupling?, <a href="http://arxiv.org/abs/1411.1923" class="a-plus-plus">arXiv:1411.1923a> [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1923" class="a-plus-plus">INSPIREa>].
    42. Bezrukov, F, Kalmykov, MY, Kniehl, BA, Shaposhnikov, M (2012) Higgs Boson Mass and New Physics. JHEP 10: pp. 140
    43. Buttazzo, D (2013) Investigating the near-criticality of the Higgs boson. JHEP 12: pp. 089
    44. Shaposhnikov, M, Wetterich, C (2010) Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683: pp. 196
    45. Holthausen, M, Lim, KS, Lindner, M (2012) Planck scale Boundary Conditions and the Higgs Mass. JHEP 02: pp. 037
    46. Hebecker, A, Knochel, AK, Weigand, T (2013) The Higgs mass from a String-Theoretic Perspective. Nucl. Phys. B 874: pp. 1
    47. Eichhorn, A, Scherer, MM (2014) Planck scale, Higgs mass and scalar dark matter. Phys. Rev. D 90: pp. 025023
    48. Altmannshofer, W, Bardeen, WA, Bauer, M, Carena, M, Lykken, JD (2015) Light Dark Matter, Naturalness and the Radiative Origin of the Electroweak Scale. JHEP 01: pp. 032
    49. Z. Fodor, K. Holland, J. Kuti, D. Nogradi and C. Schroeder, / New Higgs physics from the lattice, <a href="http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE%202007)056" class="a-plus-plus">PoS(LATTICE 2007)056a> [<a href="http://arxiv.org/abs/0710.3151" class="a-plus-plus">arXiv:0710.3151a>] [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:0710.3151" class="a-plus-plus">INSPIREa>].
    50. P. Hegde, K. Jansen, C.-J.D. Lin and A. Nagy, / Stabilizing the electroweak vacuum by higher dimensional operators in a Higgs-Yukawa model, <a href="http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE%202013)058" class="a-plus-plus">PoS(LATTICE 2013)058a> [<a href="http://arxiv.org/abs/1310.6260" class="a-plus-plus">arXiv:1310.6260a>] [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6260" class="a-plus-plus">INSPIREa>].
    51. D.Y.J. Chu, K. Jansen, B. Knippschild, C.J.D. Lin, K.-I. Nagai and A. Nagy, / Phase structure and Higgs boson mass in a Higgs-Yukawa model with a dimension-6 operator, <a href="http://arxiv.org/abs/1501.00306" class="a-plus-plus">arXiv:1501.00306a> [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00306" class="a-plus-plus">INSPIREa>].
    52. Gies, H, Gneiting, C, Sondenheimer, R (2014) Higgs Mass Bounds from Renormalization Flow for a simple Yukawa model. Phys. Rev. D 89: pp. 045012
    53. Gies, H, Sondenheimer, R (2015) Higgs Mass Bounds from Renormalization Flow for a Higgs-top-bottom model. Eur. Phys. J. C 75: pp. 68
    54. Branchina, V, Faivre, H (2005) Effective potential (in)stability and lower bounds on the scalar (Higgs) mass. Phys. Rev. D 72: pp. 065017
    55. Branchina, V, Faivre, H, Pangon, V (2009) Effective potential and vacuum stability. J. Phys. G 36: pp. 015006
    56. Burgess, CP, Clemente, V, Espinosa, JR (2002) Effective operators and vacuum instability as heralds of new physics. JHEP 01: pp. 041
    57. Rodejohann, W, Zhang, H (2012) Impact of massive neutrinos on the Higgs self-coupling and electroweak vacuum stability. JHEP 06: pp. 022
    58. Wetterich, C (1993) Exact evolution equation for the effective potential. Phys. Lett. B 301: pp. 90
    59. Harada, M, Kikukawa, Y, Kugo, T, Nakano, H (1994) Nontriviality of gauge Higgs-Yukawa system and renormalizability of gauged NJLS model. Prog. Theor. Phys. 92: pp. 1161
    60. Holland, K, Kuti, J (2004) How light can the Higgs be?. Nucl. Phys. Proc. Suppl. 129: pp. 765
    61. Holland, K (2005) Triviality and the Higgs mass lower bound. Nucl. Phys. Proc. Suppl. 140: pp. 155
    62. Branchina, V, Messina, E (2013) Stability, Higgs Boson Mass and New Physics. Phys. Rev. Lett. 111: pp. 241801
    63. Branchina, V, Messina, E, Platania, A (2014) Top mass determination, Higgs inflation and vacuum stability. JHEP 09: pp. 182
    64. Branchina, V, Messina, E, Sher, M (2015) Lifetime of the electroweak vacuum and sensitivity to Planck scale physics. Phys. Rev. D 91: pp. 013003
    65. Lalak, Z, Lewicki, M, Olszewski, P (2014) Higher-order scalar interactions and SM vacuum stability. JHEP 05: pp. 119
    66. Wetterich, C (1981) Gauge hierarchy due to strong interactions?. Phys. Lett. B 104: pp. 269
    67. C. Wetterich, / The Mass Of The Higgs Particle, in / Superstrings, unified theory and cosmology G. Furlan, J.C. Pati, D.W. Sciama, E. Sezgin and Q. Shafi eds., World Scientific, <a href="http://cds.cern.ch/record/183114" class="a-plus-plus">DESY-87-154a> (1997).
    68. Papenbrock, T, Wetterich, C (1995) Two loop results from one loop computations and nonperturbative solutions of exact evolution equations. Z. Phys. C 65: pp. 519
    69. Codello, A, Demmel, M, Zanusso, O (2014) Scheme dependence and universality in the functional renormalization group. Phys. Rev. D 90: pp. 027701
    70. Silveira, V, Zee, A (1985) Scalar phantoms. Phys. Lett. B 161: pp. 136
    71. McDonald, J (1994) Gauge singlet scalars as cold dark matter. Phys. Rev. D 50: pp. 3637
    72. Bento, MC, Bertolami, O, Rosenfeld, R, Teodoro, L (2000) Selfinteracting dark matter and invisibly decaying Higgs. Phys. Rev. D 62: pp. 041302
    73. Burgess, CP, Pospelov, M, Veldhuis, T (2001) The minimal model of nonbaryonic dark matter: A singlet scalar. Nucl. Phys. B 619: pp. 709
    74. Bento, MC, Bertolami, O, Rosenfeld, R (2001) Cosmological constraints on an invisibly decaying Higgs boson. Phys. Lett. B 518: pp. 276
    75. McDonald, J (2002) Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 88: pp. 091304
    76. Davoudiasl, H, Kitano, R, Li, T, Murayama, H (2005) The new minimal standard model. Phys. Lett. B 609: pp. 117
    77. B. Patt and F. Wilczek, / Higgs-field portal into hidden sectors, <a href="http://arxiv.org/abs/hep-ph/0605188" class="a-plus-plus">hep-ph/0605188a> [<a href="http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605188" class="a-plus-plus">INSPIREa>].
    78. Barger, V, Langacker, P, McCaskey, M, Ramsey-Musolf, MJ, Shaughnessy, G (2008) LHC Phenomenology of an Extended Standard Model with a Real Scalar Singlet. Phys. Rev. D 77: pp. 035005
    79. He, X-G, Li, T, Li, X-Q, Tsai, H-C (2007) Scalar dark matter effects in Higgs and top quark decays. Mod. Phys. Lett. A 22: pp. 2121
    80. Barger, V, Langacker, P, McCaskey, M, Ramsey-Musolf, M, Shaughnessy, G (2009) Complex Singlet Extension of the Standard Model. Phys. Rev. D 79: pp. 015018
    81. He, X-G, Li, T, Li, X-Q, Tandean, J, Tsai, H-C (2009) Constraints on Scalar Dark Matter from Direct Experimental Searches. Phys. Rev. D 79: pp. 023521
    82. Gonderinger, M, Li, Y, Patel, H, Ramsey-Musolf, MJ (2010) Vacuum Stability, Perturbativity and Scalar Singlet Dark Matter. JHEP 01: pp. 053
    83. Clark, TE, Liu, B, Love, ST, Veldhuis, T (2009) The Standard Model Higgs Boson-Inflaton and Dark Matter. Phys. Rev. D 80: pp. 075019
    84. Lerner, RN, McDonald, J (2009) Gauge singlet scalar as inflaton and thermal relic dark matter. Phys. Rev. D 80: pp. 123507
    85. Kadastik, M, Kannike, K, Racioppi, A, Raidal, M (2012) Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology. JHEP 05: pp. 061
    86. Englert, C, Plehn, T, Zerwas, D, Zerwas, PM (2011) Exploring the Higgs portal. Phys. Lett. B 703: pp. 298
    87. Englert, C, Plehn, T, Rauch, M, Zerwas, D, Zerwas, PM (2012) LHC: Standard Higgs and Hidden Higgs. Phys. Lett. B 707: pp. 512
    88. Gonderinger, M, Lim, H, Ramsey-Musolf, MJ (2012) Complex Scalar Singlet Dark Matter: Vacuum Stability and Phenomenology. Phys. Rev. D 86: pp. 043511
    89. Chen, C-S, Tang, Y (2012) Vacuum stability, neutrinos and dark matter. JHEP 04: pp. 019
    90. Cline, JM, Kainulainen, K, Scott, P, Weniger, C (2013) Update on scalar singlet dark matter. Phys. Rev. D 88: pp. 055025
    91. Aprile, E (2013) The XENON1T Dark Matter Search Experiment. Springer Proc. Phys. C12-02-22: pp. 93
    92. XENON collaboration, P. Beltrame, / Direct Dark Matter search with the XENON program, <a href="http://arxiv.org/abs/1305.2719" class="a-plus-plus">arXiv:1305.2719a> [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.2719" class="a-plus-plus">INSPIREa>].
    93. Fiorucci, S (2013) The LUX Dark Matter Search 鈥?Status Update. J. Phys. Conf. Ser. 460: pp. 012005
    94. LUX collaboration, M. Woods, / Underground Commissioning of LUX, <a href="http://arxiv.org/abs/1306.0065" class="a-plus-plus">arXiv:1306.0065a> [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0065" class="a-plus-plus">INSPIREa>].
    95. Strumia, A, Tetradis, N, Wetterich, C (1999) The region of validity of homogeneous nucleation theory. Phys. Lett. B 467: pp. 279
    96. Isidori, G, Ridolfi, G, Strumia, A (2001) On the metastability of the standard model vacuum. Nucl. Phys. B 609: pp. 387
    97. Callan, CG, Coleman, SR (1977) The Fate of the False Vacuum. 2. First Quantum Corrections. Phys. Rev. D 16: pp. 1762
    98. G. 鈥檛 Hooft, / Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, / Phys. Rev. ass="a-plus-plus">D 14 (1976) 3432 [ / Erratum ibid. ass="a-plus-plus">D 18 (1978) 2199] [<a href="http://inspirehep.net/search?p=find+J+Phys.Rev.,D14,3432" class="a-plus-plus">INSPIREa>].
    99. Sher, M (1989) Electroweak Higgs Potentials and Vacuum Stability. Phys. Rept. 179: pp. 273
    100. Degrassi, G (2012) Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08: pp. 098
    101. Chetyrkin, KG, Zoller, MF (2012) Three-loop 尾-functions for top-Yukawa and the Higgs self-interaction in the Standard Model. JHEP 06: pp. 033
    102. Duncan, MJ, Jensen, LG (1992) Exact tunneling solutions in scalar field theory. Phys. Lett. B 291: pp. 109
    103. S. Moch, U. Langenfeld and P. Uwer, / The Top-Quark鈥?em class="a-plus-plus">s Running Mass, <a href="http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(RADCOR2009)030" class="a-plus-plus">PoS(RADCOR2009)030a> [<a href="http://arxiv.org/abs/1001.3987" class="a-plus-plus">arXiv:1001.3987a>] [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3987" class="a-plus-plus">INSPIREa>].
    104. Schrempp, B, Wimmer, M (1996) Top quark and Higgs boson masses: Interplay between infrared and ultraviolet physics. Prog. Part. Nucl. Phys. 37: pp. 1
    105. Gies, H, Rechenberger, S, Scherer, MM, Zambelli, L (2013) An asymptotic safety scenario for gauged chiral Higgs-Yukawa models. Eur. Phys. J. C 73: pp. 2652
    106. S. Weinberg, / Ultraviolet Divergences In Quantum Theories Of Gravitation, in / General Relativity, S.W. Hawking and W. Israel, Cambridge University Press, Cambridge, U.K. (1980), pg. 790-831 [<a href="http://inspirehep.net/search?p=find+IRN+784877" class="a-plus-plus">INSPIREa>].
    107. Reuter, M, Saueressig, F (2012) Quantum Einstein Gravity. New J. Phys. 14: pp. 055022
    108. Don脿, P, Eichhorn, A, Percacci, R (2014) Matter matters in asymptotically safe quantum gravity. Phys. Rev. D 89: pp. 084035
    109. J. Jaeckel and V.V. Khoze, / An upper limit on the scale of new physics phenomena from rising cross sections in high multiplicity Higgs and vector boson events, <a href="http://arxiv.org/abs/1411.5633" class="a-plus-plus">arXiv:1411.5633a> [<a href="http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5633" class="a-plus-plus">INSPIREa>].
    110. Berges, J, Tetradis, N, Wetterich, C (2002) Nonperturbative renormalization flow in quantum field theory and statistical physics. Phys. Rept. 363: pp. 223
    111. Aoki, K (2000) Introduction to the nonperturbative renormalization group and its recent applications. Int. J. Mod. Phys. B 14: pp. 1249
    112. Pawlowski, JM (2007) Aspects of the functional renormalisation group. Annals Phys. 322: pp. 2831
    113. Gies, H (2012) Introduction to the functional RG and applications to gauge theories. Lect. Notes Phys. 852: pp. 287
    114. Braun, J (2012) Fermion Interactions and Universal Behavior in Strongly Interacting Theories. J. Phys. G 39: pp. 033001
    115. Litim, DF (2001) Optimized renormalization group flows. Phys. Rev. D 64: pp. 105007
    116. Gies, H, Scherer, MM (2010) Asymptotic safety of simple Yukawa systems. Eur. Phys. J. C 66: pp. 387
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1029-8479
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700