Thermal analysis of laser beam welding of nickel-based super alloy Inconel 625 to AISI 316L, using Gaussian optics theory in keyhole
详细信息    查看全文
  • 作者:Ahmad Nejad Ebrahimi ; N. Bani Mostafa Arab…
  • 关键词:Laser welding ; Multiple reflections ; Inverse Bremsstrahlung coefficient ; Fresnel absorption ; Gaussian optics theory
  • 刊名:Journal of the Brazilian Society of Mechanical Sciences and Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:38
  • 期:4
  • 页码:1199-1206
  • 全文大小:1,510 KB
  • 参考文献:1.Lingenfelter A (1989) Welding of Inconel alloy 718: a historical overview. In: Loria EA (ed) Superalloy 718: metallurgy and applications. The Minerals, Metals and Materials Society, pp 673–683
    2.Radavich JF (1989) The physical metallurgy of cast and wrought alloy 718 In: Lopia EA (ed) Superalloy 718: metallurgy and applications. The Minerals, Metals and Materials Society, pp 229–240
    3.Salonitis K, Drougas D (2010) Chryssolouris G, finite element modeling of penetration laser welding of sandwich materials. J Phys Procedia 5:327–335CrossRef
    4.Tan W, Bailey NS, Shin YC (2013) Investigation of keyhole plume and molten pool based on a three-dimensional dynamic model with sharp interface formulation. J Phys D Appl Phys 46:055501CrossRef
    5.Pang S, Chen L, Zhou J, Yin Y, Chen T (2011) A three-dimensional sharp interface model for self-consistent keyhole and weld pool dynamics in deep penetration laser welding. J Phys D Appl Phys 4(4):025301CrossRef
    6.Vänskä M, Abt F, Weber R, Salminena A, Graf T (2013) Effects of welding parameters on to keyhole geometry for partial penetration laser welding. J. Phys Procedia 41:199–208CrossRef
    7.Naffakh H, Shamanian M, Ashrafizadeh F (2009) Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J Mater Process Technol 209:3628–3639CrossRef
    8.Baghjari SH, AkbariMousavi SAA (2014) Experimental investigation on dissimilar pulsed Nd:YAG laser welding of AISI 420 stainless steel to kovar alloy. J Mater Des 57:128–134CrossRef
    9.Al-Kazzaz H, Medraj M, Cao X, Jahazi M (2008) Nd:YAG, laser welding of aerospace grade ZE41A magnesium alloy Modeling and experimental investigations. J. Mater Chem Phys 109:61–76CrossRef
    10.Zhang YM, Liu YC (2007) Control of dynamic keyhole welding process. J Autom 43:876–884MathSciNet CrossRef MATH
    11.Fujinaga S, Takenaka H, Narikiyo T, Katayama S, Matsunawa A (2000) Direct observation of keyhole behavior during pulse modulated high-power Nd:YAG laser irradiation. J Phys D Appl Phys 33:492–497CrossRef
    12.Volpp J, Vollertsen F (2013) Analytical modeling of the keyhole including multiple reflections for analysis of the influence of different laser intensity distributions on keyhole geometry. J. Phys Procedia 41:453–461
    13.Ramkumar KD, Patel SD, Parveen SS, Choudhury DJ, Prabaharan P, Arivazhagan N, Anthony Xavior M (2014) Influence of filler metals and welding techniques on the structure property relationships of Inconel 718 and AISI 316L dissimilar weldments. J Mater Des. doi:10.​1016/​j.​matdes.​2014.​05.​019
    14.Kaplan A (1994) A model of deep penetration laser welding based on calculation of the keyhole profile. J Phys D Appl Phys 27:1805–1814CrossRef
    15.Dowden J, Kapadia P, Postacioglu N (1989) An analysis of the laser-plasma interaction in laser keyhole welding. J Phys D Appl Phys 22(6):741–749CrossRef
    16.Solana P, Negro G (1997) A study of the effect of multiple reflections on the shape of the keyhole of the keyhole in the laser processing of materials. J Phys D Appl Phys 30:3216–3222CrossRef
    17.Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2014) Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding. J. Phys Procedia 56:515–524CrossRef
    18.Jin X, Berger P, Graf T (2006) Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding. J Phys D Appl Phys 39(21):4703–4712CrossRef
    19.Jin X, Li L, Zhang Y (2002) A study on Fresnel absorption and reflections in the keyhole in deep penetration laser welding. J Phys D Appl Phys 35:2304–2310CrossRef
    20.Punkari A, Weckman DC, Kerr HW (2003) Effects of magnesium content on dual beam Nd:YAG laser welding of Al–Mg alloys. J Sci Technol Weld Join 8(4):269–281CrossRef
    21.Lampa C, Kaplan AF, Powell J, Magnusson C (1997) An analytical thermodynamic model of laser welding. J Phys D Appl Phys 30(9):1293–1299CrossRef
    22.Al-Kazzaz H, Medraj M, Cao X, Xiao M, Jahazi M (2006) Effect of laser power and joint gap on weld quality of aerospace grade ZE41A-T5 magnesium alloy using Nd:YAG laser. In: Proceedings of the international symposium on magnesium, J Technology in the Global Age, p 503–518
    23.Dausinger F, Rapp J, Beck M, Faisst F, Hack R, Hugel H (1996) Welding of aluminum: a challenging opportunity for laser technology. J Laser Appl 8(6):285–290CrossRef
    24.Swift-Hook DT, Gick AEF (1973) Penetration welding with lasers. J. Weld 52(11):492–499
  • 作者单位:Ahmad Nejad Ebrahimi (1)
    N. Bani Mostafa Arab (1)
    M. Hoseinpour Gollo (1)

    1. Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU), Lavizan, Tehran, Iran
  • 刊物主题:Mechanical Engineering;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1806-3691
文摘
Keyhole laser welding is widely used as an industrial joining method in recent years, but it is not quantitatively understood due to its high complexity. This paper aims to provide a computational platform to quantitatively predict the thermal history of various locations such as HAZ and WM in the welded parts. The model characterizes the absorbed laser power in the keyhole wall at different depths by applying emission theory of light. Bremsstrahlung reflection, Fresnel absorption coefficient and multiple reflection, obtained from a volumetric heat flux distribution, are used to calculate using the absorbed laser beam density in the butt joint of nickel-based super alloy Inconel 625 to AISI 316L. The simulation results show that the model predicts the thermal history in various locations in good agreement with experimental results. The presented model provides a volumetric model to simulate the heat flux profile using various Fresnel absorption coefficients over the sample depth that captures the actual operation conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700