Human semen contains exosomes with potent anti-HIV-1 activity
详细信息    查看全文
  • 作者:Marisa N Madison (1)
    Richard J Roller (1)
    Chioma M Okeoma (1) (2)

    1. Department of Microbiology
    ; Carver College of Medicine ; University of Iowa ; 51 Newton Road ; Iowa City ; IA 52242-1109 ; USA
    2. Interdisciplinary Program in Molecular and Cellular Biology
    ; University of Iowa ; Iowa City ; IA 52242 ; USA
  • 关键词:Exosome ; Semen ; HIV ; 1 ; mAIDS ; HSV
  • 刊名:Retrovirology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:3,768 KB
  • 参考文献:1. Simpson, RJ, Jensen, SS, Lim, JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8: pp. 4083-4099 CrossRef
    2. Schorey, JS, Bhatnagar, S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9: pp. 871-881 34.x" target="_blank" title="It opens in new window">CrossRef
    3. Alvarez-Erviti, L, Seow, Y, Yin, H, Betts, C, Lakhal, S, Wood, MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29: pp. 341-345 38/nbt.1807" target="_blank" title="It opens in new window">CrossRef
    4. Caby, MP, Lankar, D, Vincendeau-Scherrer, C, Raposo, G, Bonnerot, C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17: pp. 879-887 3/intimm/dxh267" target="_blank" title="It opens in new window">CrossRef
    5. Pisitkun, T, Shen, RF, Knepper, MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101: pp. 13368-13373 3/pnas.0403453101" target="_blank" title="It opens in new window">CrossRef
    6. Palanisamy, V, Sharma, S, Deshpande, A, Zhou, H, Gimzewski, J, Wong, DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5: pp. e8577 371/journal.pone.0008577" target="_blank" title="It opens in new window">CrossRef
    7. Admyre, C, Johansson, SM, Qazi, KR, Filen, JJ, Lahesmaa, R, Norman, M, Neve, EP, Scheynius, A, Gabrielsson, S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179: pp. 1969-1978 3.1969" target="_blank" title="It opens in new window">CrossRef
    8. Admyre, C, Grunewald, J, Thyberg, J, Gripenback, S, Tornling, G, Eklund, A, Scheynius, A, Gabrielsson, S (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22: pp. 578-583 3/09031936.03.00041703" target="_blank" title="It opens in new window">CrossRef
    9. Poliakov, A, Spilman, M, Dokland, T, Amling, CL, Mobley, JA (2009) Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69: pp. 159-167 CrossRef
    10. Ronquist, G, Brody, I (1985) The prostasome: its secretion and function in man. Biochim Biophys Acta 822: pp. 203-218 304-4157(85)90008-5" target="_blank" title="It opens in new window">CrossRef
    11. Conde-Vancells, J, Rodriguez-Suarez, E, Embade, N, Gil, D, Matthiesen, R, Valle, M, Elortza, F, Lu, SC, Mato, JM, Falcon-Perez, JM (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7: pp. 5157-5166 CrossRef
    12. Subra, C, Grand, D, Laulagnier, K, Stella, A, Lambeau, G, Paillasse, M, De Medina, P, Monsarrat, B, Perret, B, Silvente-Poirot, S, Poirot, M, Record, M (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51: pp. 2105-2120 3657" target="_blank" title="It opens in new window">CrossRef
    13. Vojtech, L, Woo, S, Hughes, S, Levy, C, Ballweber, L, Sauteraud, RP, Strobl, J, Westerberg, K, Gottardo, R, Tewari, M, Hladik, F (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42: pp. 7290-7304 3/nar/gku347" target="_blank" title="It opens in new window">CrossRef
    14. Mittelbrunn, M, Gutierrez-Vazquez, C, Villarroya-Beltri, C, Gonzalez, S, Sanchez-Cabo, F, Gonzalez, MA, Bernad, A, Sanchez-Madrid, F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2: pp. 282 38/ncomms1285" target="_blank" title="It opens in new window">CrossRef
    15. Skog, J, Wurdinger, T, van Rijn, S, Meijer, DH, Gainche, L, Sena-Esteves, M, Curry, WT, Carter, BS, Krichevsky, AM, Breakefield, XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10: pp. 1470-1476 38/ncb1800" target="_blank" title="It opens in new window">CrossRef
    16. Zomer, A, Vendrig, T, Hopmans, ES, van Eijndhoven, M, Middeldorp, JM, Pegtel, DM (2010) Exosomes: fit to deliver small RNA. Commun Integr Biol 3: pp. 447-450 3.5.12339" target="_blank" title="It opens in new window">CrossRef
    17. Sun, D, Zhuang, X, Xiang, X, Liu, Y, Zhang, S, Liu, C, Barnes, S, Grizzle, W, Miller, D, Zhang, HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18: pp. 1606-1614 38/mt.2010.105" target="_blank" title="It opens in new window">CrossRef
    18. Khatua, AK, Taylor, HE, Hildreth, JE, Popik, W (2009) Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol 83: pp. 512-521 CrossRef
    19. Li, J, Liu, K, Liu, Y, Xu, Y, Zhang, F, Yang, H, Liu, J, Pan, T, Chen, J, Wu, M, Zhou, X, Yuan, Z (2013) Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat Immunol 14: pp. 793-803 38/ni.2647" target="_blank" title="It opens in new window">CrossRef
    20. Kelly, RW, Critchley, HO (1997) Immunomodulation by human seminal plasma: a benefit for spermatozoon and pathogen?. Hum Reprod 12: pp. 2200-2207 3/oxfordjournals.humrep.a019559" target="_blank" title="It opens in new window">CrossRef
    21. Royce, RA, Sena, A, Cates, W, Cohen, MS (1997) Sexual transmission of HIV. N Engl J Med 336: pp. 1072-1078 3361507" target="_blank" title="It opens in new window">CrossRef
    22. Varghese, B, Maher, JE, Peterman, TA, Branson, BM, Steketee, RW (2002) Reducing the risk of sexual HIV transmission: quantifying the per-act risk for HIV on the basis of choice of partner, sex act, and condom use. Sex Transm Dis 29: pp. 38-43 35-200201000-00007" target="_blank" title="It opens in new window">CrossRef
    23. O鈥橞rien, TR, Busch, MP, Donegan, E, Ward, JW, Wong, L, Samson, SM, Perkins, HA, Altman, R, Stoneburner, RL, Holmberg, SD (1994) Heterosexual transmission of human immunodeficiency virus type 1 from transfusion recipients to their sex partners. J Acquir Immune Defic Syndr 7: pp. 705-710
    24. Martellini, JA, Cole, AL, Svoboda, P, Stuchlik, O, Chen, LM, Chai, KX, Gangrade, BK, Sorensen, OE, Pohl, J, Cole, AM (2011) HIV-1 enhancing effect of prostatic acid phosphatase peptides is reduced in human seminal plasma. PLoS One 6: pp. e16285 371/journal.pone.0016285" target="_blank" title="It opens in new window">CrossRef
    25. Martellini, JA, Cole, AL, Venkataraman, N, Quinn, GA, Svoboda, P, Gangrade, BK, Pohl, J, Sorensen, OE, Cole, AM (2009) Cationic polypeptides contribute to the anti-HIV-1 activity of human seminal plasma. FASEB J 23: pp. 3609-3618 31961" target="_blank" title="It opens in new window">CrossRef
    26. Munch, J, Rucker, E, Standker, L, Adermann, K, Goffinet, C, Schindler, M, Wildum, S, Chinnadurai, R, Rajan, D, Specht, A, Gim茅nez-Gallego, G, S谩nchez, PC, Fowler, DM, Koulov, A, Kelly, JW, Mothes, W, Grivel, JC, Margolis, L, Keppler, OT, Forssmann, WG, Kirchhoff, F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131: pp. 1059-1071 CrossRef
    27. Roan, NR, Liu, H, Usmani, SM, Neidleman, J, Muller, JA, Avila-Herrera, A, Gawanbacht, A, Zirafi, O, Chu, S, Dong, M, Kumar, ST, Smith, JF, Pollard, KS, F盲ndrich, M, Kirchhoff, F, M眉nch, J, Witkowska, HE, Greene, WC (2014) Liquefaction of semen generates and later degrades a conserved semenogelin peptide that enhances HIV infection. J Virol 88: pp. 7221-7234 CrossRef
    28. Keller, S, Sanderson, MP, Stoeck, A, Altevogt, P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107: pp. 102-108 CrossRef
    29. Kesimer, M, Scull, M, Brighton, B, DeMaria, G, Burns, K, O鈥橬eal, W, Pickles, RJ, Sheehan, JK (2009) Characterization of exosome-like vesicles released from human tracheobronchial ciliated epithelium: a possible role in innate defense. FASEB J 23: pp. 1858-1868 31" target="_blank" title="It opens in new window">CrossRef
    30. Keller, S, Ridinger, J, Rupp, AK, Janssen, JW, Altevogt, P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9: pp. 86 CrossRef
    31. Kogure, T, Lin, WL, Yan, IK, Braconi, C, Patel, T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54: pp. 1237-1248 CrossRef
    32. Naslund, TI, Paquin-Proulx, D, Paredes, PT, Vallhov, H, Sandberg, JK, Gabrielsson, S (2014) Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 28: pp. 171-180 CrossRef
    33. Jones, PH, Mehta, HV, Okeoma, CM (2012) A novel role for APOBEC3: Susceptibility to sexual transmission of murine acquired immunodeficiency virus (mAIDS) is aggravated in APOBEC3 deficient mice. Retrovirology 9: pp. 50 CrossRef
    34. Tang, SB, Levy, JA (1991) Inactivation of HIV-1 by trypsin and its use in demonstrating specific virus infection of cells. J Virol Methods 33: pp. 39-46 34(91)90005-K" target="_blank" title="It opens in new window">CrossRef
    35. Marozsan, AJ, Fraundorf, E, Abraha, A, Baird, H, Moore, D, Troyer, R, Nankja, I, Arts, EJ (2004) Relationships between infectious titer, capsid protein levels, and reverse transcriptase activities of diverse human immunodeficiency virus type 1 isolates. J Virol 78: pp. 11130-11141 30-11141.2004" target="_blank" title="It opens in new window">CrossRef
    36. Ajamian, L, Abrahamyan, L, Milev, M, Ivanov, PV, Kulozik, AE, Gehring, NH, Mouland, AJ (2008) Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. RNA 14: pp. 914-927 CrossRef
    37. Butsch, M, Boris-Lawrie, K (2000) Translation is not required To generate virion precursor RNA in human immunodeficiency virus type 1-infected T cells. J Virol 74: pp. 11531-11537 31-11537.2000" target="_blank" title="It opens in new window">CrossRef
    38. Tachedjian, G, Radzio, J, Sluis-Cremer, N (2005) Relationship between enzyme activity and dimeric structure of recombinant HIV-1 reverse transcriptase. Proteins 60: pp. 5-13 CrossRef
    39. Tachedjian, G, Aronson, HE, de los Santos, M, Seehra, J, McCoy, JM, Goff, SP (2003) Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization. J Mol Biol 326: pp. 381-396 36(02)01433-X" target="_blank" title="It opens in new window">CrossRef
    40. Okeoma, CM, Lovsin, N, Peterlin, BM, Ross, SR (2007) APOBEC3 inhibits mouse mammary tumour virus replication in vivo. Nature 445: pp. 927-930 38/nature05540" target="_blank" title="It opens in new window">CrossRef
    41. Low, A, Okeoma, CM, Lovsin, N, de las Heras, M, Taylor, TH, Peterlin, BM, Ross, SR, Fan, H (2009) Enhanced replication and pathogenesis of Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. Virology 385: pp. 455-463 CrossRef
    42. Okeoma, CM, Huegel, AL, Lingappa, J, Feldman, MD, Ross, SR (2010) APOBEC3 proteins expressed in mammary epithelial cells are packaged into retroviruses and can restrict transmission of milk-borne virions. Cell Host Microbe 8: pp. 534-543 3" target="_blank" title="It opens in new window">CrossRef
    43. Okeoma, CM, Low, A, Bailis, W, Fan, HY, Peterlin, BM, Ross, SR (2009) Induction of APOBEC3 in vivo causes increased restriction of retrovirus infection. J Virol 83: pp. 3486-3495 347-08" target="_blank" title="It opens in new window">CrossRef
    44. Okeoma, CM, Petersen, J, Ross, SR (2009) Expression of murine APOBEC3 alleles in different mouse strains and their effect on mouse mammary tumor virus infection. J Virol 83: pp. 3029-3038 36-08" target="_blank" title="It opens in new window">CrossRef
    45. Iwatani, Y, Chan, DS, Wang, F, Maynard, KS, Sugiura, W, Gronenborn, AM, Rouzina, I, Williams, MC, Musier-Forsyth, K, Levin, JG (2007) Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res 35: pp. 7096-7108 3/nar/gkm750" target="_blank" title="It opens in new window">CrossRef
    46. Mbisa, JL, Barr, R, Thomas, JA, Vandegraaff, N, Dorweiler, IJ, Svarovskaia, ES, Brown, WL, Mansky, LM, Gorelick, RJ, Harris, RS, Engelman, A, Pathak, VK (2007) Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J Virol 81: pp. 7099-7110 CrossRef
    47. Wang, X, Ao, Z, Chen, L, Kobinger, G, Peng, J, Yao, X (2012) The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. J Virol 86: pp. 3777-3786 CrossRef
    48. de Hoog, VC, Timmers, L, Schoneveld, AH, Wang, JW, van de Weg, SM, Sze, SK, van Keulen, JK, Hoes, AW, den Ruijter, HM, de Kleijn, DP, Mosterd, A (2013) Serum extracellular vesicle protein levels are associated with acute coronary syndrome. Eur Heart J Acute Cardiovasc Care 2: pp. 53-60 CrossRef
    49. Quackenbush, JF, Cassidy, PB, Pfeffer, LM, Boucher, KM, Hawkes, JE, Pfeffer, SR, Kopelovich, L, Leachman, SA (2014) Isolation of circulating MicroRNAs from Microvesicles found in human plasma. Methods Mol Biol 1102: pp. 641-653 3-727-3_34" target="_blank" title="It opens in new window">CrossRef
    50. Rekker, K, Saare, M, Roost, AM, Kubo, AL, Zarovni, N, Chiesi, A, Salumets, A, Peters, M (2013) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47: pp. 135-138 3.10.020" target="_blank" title="It opens in new window">CrossRef
    51. Booth, AM, Fang, Y, Fallon, JK, Yang, JM, Hildreth, JE, Gould, SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172: pp. 923-935 3/jcb.200508014" target="_blank" title="It opens in new window">CrossRef
    52. Liao, Z, Graham, DR, Hildreth, JE (2003) Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. AIDS Res Hum Retroviruses 19: pp. 675-687 3322280900" target="_blank" title="It opens in new window">CrossRef
    53. Ochsenbauer, C, Edmonds, TG, Ding, H, Keele, BF, Decker, J, Salazar, MG, Salazar-Gonzalez, JF, Shattock, R, Haynes, BF, Shaw, GM, Hahn, BH, Kappes, JC (2012) Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J Virol 86: pp. 2715-2728 CrossRef
    54. Cook, WJ, Green, KA, Obar, JJ, Green, WR (2003) Quantitative analysis of LP-BM5 murine leukemia retrovirus RNA using real-time RT-PCR. J Virol Methods 108: pp. 49-58 34(02)00256-2" target="_blank" title="It opens in new window">CrossRef
    55. Ejercito, PM, Kieff, ED, Roizman, B (1968) Characterization of herpes simplex virus strains differing in their effects on social behaviour of infected cells. J Gen Virol 2: pp. 357-364 317-2-3-357" target="_blank" title="It opens in new window">CrossRef
    56. Roller, RJ, Haugo, AC, Yang, K, Baines, JD (2014) The herpes simplex virus 1 UL51 gene product has cell type-specific functions in cell-to-cell spread. J Virol 88: pp. 4058-4068 3707-13" target="_blank" title="It opens in new window">CrossRef
    57. Maury, W (1994) Monocyte maturation controls expression of equine infectious anemia virus. J Virol 68: pp. 6270-6279
    58. Jones, PH, Maric, M, Madison, MN, Maury, W, Roller, RJ, Okeoma, CM (2013) BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 438: pp. 37-49 3.01.010" target="_blank" title="It opens in new window">CrossRef
    59. Jones, PH, Mehta, HV, Maric, M, Roller, RJ, Okeoma, CM (2012) Bone marrow stromal cell antigen 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo. Retrovirology 9: pp. 10 CrossRef
    60. Mehta, HV, Jones, PH, Weiss, JP, Okeoma, CM (2012) IFN-alpha and lipopolysaccharide upregulate APOBEC3 mRNA through different signaling pathways. J Immunol 189: pp. 4088-4103 CrossRef
    61. Okeoma, CM, Shen, M, Ross, SR (2008) A novel block to mouse mammary tumor virus infection of lymphocytes in B10.BR mice. J Virol 82: pp. 1314-1322 CrossRef
    62. Jones, PH, Mahauad-Fernandez, WD, Madison, MN, Okeoma, CM (2013) BST-2/tetherin is overexpressed in mammary gland and tumor tissues in MMTV-induced mammary cancer. Virology 444: pp. 124-139 3.05.042" target="_blank" title="It opens in new window">CrossRef
    63. Jones, PH, Okeoma, CM (2013) Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated BST-2/tetherin regulation. Cell Signal 25: pp. 2752-2761 3.08.042" target="_blank" title="It opens in new window">CrossRef
    64. Li, XY, Guo, F, Zhang, L, Kleiman, L, Cen, S (2007) APOBEC3G inhibits DNA strand transfer during HIV-1 reverse transcription. J Biol Chem 282: pp. 32065-32074 3423200" target="_blank" title="It opens in new window">CrossRef
    65. Masuda, T, Planelles, V, Krogstad, P, Chen, IS (1995) Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain. J Virol 69: pp. 6687-6696
    66. Zack, JA, Arrigo, SJ, Weitsman, SR, Go, AS, Haislip, A, Chen, IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61: pp. 213-222 CrossRef
  • 刊物主题:Virology; Infectious Diseases; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1742-4690
文摘
Background Exosomes are membranous nanovesicles secreted into the extracellular milieu by diverse cell types. Exosomes facilitate intercellular communication, modulate cellular pheno/genotype, and regulate microbial pathogenesis. Although human semen contains exosomes, their role in regulating infection with viruses that are sexually transmitted remains unknown. In this study, we used semen exosomes purified from healthy human donors to evaluate the role of exosomes on the infectivity of different strains of HIV-1 in a variety of cell lines. Results We show that human semen contains a heterologous population of exosomes, enriched in mRNA encoding tetraspanin exosomal markers and various antiviral factors. Semen exosomes are internalized by recipient cells and upon internalization, inhibit replication of a broad array of HIV-1 strains. Remarkably, the anti-HIV-1 activity of semen exosomes is specific to retroviruses because semen exosomes blocked replication of the murine AIDS (mAIDS) virus complex (LP-BM5). However, exosomes from blood had no effect on HIV-1 or LP-BM5 replication. Additionally, semen and blood exosomes had no effect on replication of herpes simplex virus; types 1 and 2 (HSV1 and HSV2). Mechanistic studies indicate that semen exosomes exert a post-entry block on HIV-1 replication by orchestrating deleterious effects on particle-associated reverse transcriptase activity and infectivity. Conclusions These illuminating findings i) improve our knowledge of the cargo of semen exosomes, ii) reveal that semen exosomes possess anti-retroviral activity, and iii) suggest that semen exosome-mediated inhibition of HIV-1 replication may provide novel opportunities for the development of new therapeutics for HIV-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700