Bone marrow stromal antigen 2 expressed in cancer cells promotes mammary tumor growth and metastasis
详细信息    查看全文
  • 作者:Wadie D Mahauad-Fernandez (1) (2)
    Kris A DeMali (2) (3)
    Alicia K Olivier (4) (5)
    Chioma M Okeoma (1) (2)

    1. Department of Microbiology
    ; Carver College of Medicine ; University of Iowa ; 51 Newton Road ; Iowa City ; IA ; 52242-1109 ; USA
    2. Interdisciplinary Graduate Program in Molecular and Cellular Biology (MCB)
    ; University of Iowa ; 500 Newton Road ; Iowa City ; IA ; 52242-1109 ; USA
    3. Department of Biochemistry
    ; Carver College of Medicine ; University of Iowa ; 51 Newton Road ; Iowa City ; IA ; 52242-1109 ; USA
    4. Department of Pathology
    ; Carver College of Medicine ; University of Iowa ; 51 Newton Road ; Iowa City ; IA ; 52242-1109 ; USA
    5. Department of Pathobiology and Population Medicine
    ; College of Veterinary Medicine ; Mississippi State University ; 240 Wise Center Drive ; Starkville ; MS ; 39762-6100 ; USA
  • 刊名:Breast Cancer Research
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:16
  • 期:6
  • 全文大小:4,092 KB
  • 参考文献:1. Balmain, A, Gray, J, Ponder, B (2003) The genetics and genomics of cancer. Nat Genet 33: pp. 238-244 38/ng1107" target="_blank" title="It opens in new window">CrossRef
    2. Tu, S, Bhagat, G, Cui, G, Takaishi, S, Kurt-Jones, EA, Rickman, B, Betz, KS, Penz-Oesterreicher, M, Bjorkdahl, O, Fox, JG, Wang, TC (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14: pp. 408-419 CrossRef
    3. Lin, EY, Nguyen, AV, Russell, RG, Pollard, JW (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193: pp. 727-740 3.6.727" target="_blank" title="It opens in new window">CrossRef
    4. Wang, W, Nishioka, Y, Ozaki, S, Jalili, A, Abe, S, Kakiuchi, S, Kishuku, M, Minakuchi, K, Matsumoto, T, Sone, S (2009) HM1.24 (CD317) is a novel target against lung cancer for immunotherapy using anti-HM1.24 antibody. Cancer Immunol Immunother 58: pp. 967-976 CrossRef
    5. Silveira, NJ, Varuzza, L, Machado-Lima, A, Lauretto, MS, Pinheiro, DG, Rodrigues, RV, Severino, P, Nobrega, FG, Silva, WA, De, B, Pereira, CA, Tajara, EH (2008) Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries. BMC Med Genomics 1: pp. 56 CrossRef
    6. Fang, KH, Kao, HK, Chi, LM, Liang, Y, Liu, SC, Hseuh, C, Liao, CT, Yen, TC, Yu, JS, Chang, KP (2014) Overexpression of BST2 is associated with nodal metastasis and poorer prognosis in oral cavity cancer. Laryngoscope 124: pp. 354-360 CrossRef
    7. Wainwright, DA, Balyasnikova, IV, Han, Y, Lesniak, MS (2011) The expression of BST2 in human and experimental mouse brain tumors. Exp Mol Pathol 91: pp. 440-446 CrossRef
    8. Wong, YF, Cheung, TH, Lo, KW, Yim, SF, Siu, NS, Chan, SC, Ho, TW, Wong, KW, Yu, MY, Wang, VW, Li, C, Gardner, GJ, Bonome, T, Johnson, WB, Smith, DI, Chung, TK, Birrer, MJ (2007) Identification of molecular markers and signaling pathway in endometrial cancer in Hong Kong Chinese women by genome-wide gene expression profiling. Oncogene 26: pp. 1971-1982 38/sj.onc.1209986" target="_blank" title="It opens in new window">CrossRef
    9. Schliemann, C, Roesli, C, Kamada, H, Borgia, B, Fugmann, T, Klapper, W, Neri, D (2010) In vivo biotinylation of the vasculature in B-cell lymphoma identifies BST-2 as a target for antibody-based therapy. Blood 115: pp. 736-744 39004" target="_blank" title="It opens in new window">CrossRef
    10. Cai, D, Cao, J, Li, Z, Zheng, X, Yao, Y, Li, W, Yuan, Z (2009) Up-regulation of bone marrow stromal protein 2 (BST2) in breast cancer with bone metastasis. BMC Cancer 9: pp. 102 CrossRef
    11. Jones, PH, Mahauad-Fernandez, WD, Madison, MN, Okeoma, CM (2013) BST-2/tetherin is overexpressed in mammary gland and tumor tissues in MMTV-induced mammary cancer. Virology 444: pp. 124-139 3.05.042" target="_blank" title="It opens in new window">CrossRef
    12. Matsuda, A, Suzuki, Y, Honda, G, Muramatsu, S, Matsuzaki, O, Nagano, Y, Doi, T, Shimotohno, K, Harada, T, Nishida, E, Hayashi, H, Sugano, S (2003) Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22: pp. 3307-3318 38/sj.onc.1206406" target="_blank" title="It opens in new window">CrossRef
    13. Galao, RP, Tortorec, A, Pickering, S, Kueck, T, Neil, SJ (2012) Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses. Cell Host Microbe 12: pp. 633-644 CrossRef
    14. Tokarev, A, Suarez, M, Kwan, W, Fitzpatrick, K, Singh, R, Guatelli, J (2013) Stimulation of NF-kappaB activity by the HIV restriction factor BST2. J Virol 87: pp. 2046-2057 CrossRef
    15. Neil, SJ, Zang, T, Bieniasz, PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451: pp. 425-430 38/nature06553" target="_blank" title="It opens in new window">CrossRef
    16. Jones, PH, Maric, M, Madison, MN, Maury, W, Roller, RJ, Okeoma, CM (2013) BST-2/tetherin-mediated restriction of chikungunya (CHIKV) VLP budding is counteracted by CHIKV non-structural protein 1 (nsP1). Virology 438: pp. 37-49 3.01.010" target="_blank" title="It opens in new window">CrossRef
    17. Jones, PH, Mehta, HV, Maric, M, Roller, RJ, Okeoma, CM (2012) Bone marrow stromal cell antigen 2 (BST-2) restricts mouse mammary tumor virus (MMTV) replication in vivo. Retrovirology 9: pp. 10 CrossRef
    18. Yoo, H, Park, SH, Ye, SK, Kim, M (2011) IFN-gamma-induced BST2 mediates monocyte adhesion to human endothelial cells. Cell Immunol 267: pp. 23-29 CrossRef
    19. Ozaki, S, Kosaka, M, Wakahara, Y, Ozaki, Y, Tsuchiya, M, Koishihara, Y, Goto, T, Matsumoto, T (1999) Humanized anti-HM1.24 antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells. Blood 93: pp. 3922-3930
    20. Yi, EH, Yoo, H, Noh, KH, Han, S, Lee, H, Lee, JK, Won, C, Kim, BH, Kim, MH, Cho, CH, Ye, SK (2013) BST-2 is a potential activator of invasion and migration in tamoxifen-resistant breast cancer cells. Biochem Biophys Res Commun 435: pp. 685-690 3.05.043" target="_blank" title="It opens in new window">CrossRef
    21. Sayeed, A, Luciani-Torres, G, Meng, Z, Bennington, JL, Moore, DH, Dairkee, SH (2013) Aberrant regulation of the BST2 (Tetherin) promoter enhances cell proliferation and apoptosis evasion in high grade breast cancer cells. PLoS One 8: pp. e67191 371/journal.pone.0067191" target="_blank" title="It opens in new window">CrossRef
    22. Faustino-Rocha, A, Oliveira, PA, Pinho-Oliveira, J, Teixeira-Guedes, C, Soares-Maia, R, Costa, RG, Colaco, B, Pires, MJ, Colaco, J, Ferreira, R, Ginja, M (2013) Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim 42: pp. 217-224 38/laban.254" target="_blank" title="It opens in new window">CrossRef
    23. Qiu, H, Kuolee, R, Harris, G, Chen, W (2009) Role of NADPH phagocyte oxidase in host defense against acute respiratory Acinetobacter baumannii infection in mice. Infect Immun 77: pp. 1015-1021 CrossRef
    24. Jones, PH, Okeoma, CM (2013) Phosphatidylinositol 3- kinase is involved in Toll-like receptor 4-mediated BST-2/Tetherin regulation. Cell Signal 25: pp. 2752-2761 3.08.042" target="_blank" title="It opens in new window">CrossRef
    25. Ivshina, AV, George, J, Senko, O, Mow, B, Putti, TC, Smeds, J, Lindahl, T, Pawitan, Y, Hall, P, Nordgren, H, Wong, JE, Liu, ET, Bergh, J, Kuznetsov, VA, Miller, LD (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66: pp. 10292-10301 CrossRef
    26. Kretschmer, C, Sterner-Kock, A, Siedentopf, F, Schoenegg, W, Schlag, PM, Kemmner, W (2011) Identification of early molecular markers for breast cancer. Mol Cancer 10: pp. 15 CrossRef
    27. Casey, T, Bond, J, Tighe, S, Hunter, T, Lintault, L, Patel, O, Eneman, J, Crocker, A, White, J, Tessitore, J, Stanley, M, Harlow, S, Weaver, D, Muss, H, Plaut, K (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114: pp. 47-62 CrossRef
    28. University of Iowa Institute for Clinical and Translational Science (ICTS) Compass. [https://research.icts.uiowa.edu/compass]
    29. Ewens, A, Mihich, E, Ehrke, MJ (2005) Distant metastasis from subcutaneously grown E0771 medullary breast adenocarcinoma. Anticancer Res 25: pp. 3905-3915
    30. Heppner, GH, Miller, FR, Shekhar, PM (2000) Nontransgenic models of breast cancer. Breast Cancer Res 2: pp. 331-334 CrossRef
    31. Tao, K, Fang, M, Alroy, J, Sahagian, GG (2008) Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8: pp. 228 CrossRef
    32. Tiffen, JC, Bailey, CG, Ng, C, Rasko, JE, Holst, J (2010) Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo. Mol Cancer 9: pp. 299 CrossRef
    33. Kalluri, R, Zeisberg, M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: pp. 392-401 38/nrc1877" target="_blank" title="It opens in new window">CrossRef
    34. Ruoslahti, E (1984) Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev 3: pp. 43-51 CrossRef
    35. Kim, YN, Koo, KH, Sung, JY, Yun, UJ, Kim, H (2012) Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol 2012: pp. 306879 306879" target="_blank" title="It opens in new window">CrossRef
    36. Zhu, T, Starling-Emerald, B, Zhang, X, Lee, KO, Gluckman, PD, Mertani, HC, Lobie, PE (2005) Oncogenic transformation of human mammary epithelial cells by autocrine human growth hormone. Cancer Res 65: pp. 317-324
    37. Feng, M, Li, Z, Aau, M, Wong, CH, Yang, X, Yu, Q (2011) Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene 30: pp. 2242-2251 38/onc.2010.602" target="_blank" title="It opens in new window">CrossRef
    38. Coghlin, C, Murray, GI (2010) Current and emerging concepts in tumour metastasis. J Pathol 222: pp. 1-15 CrossRef
    39. Mareel, M, Leroy, A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83: pp. 337-376
    40. Steeg, PS (2006) Tumor metastasis: Mechanistic insights and clinical challenges. Nat Med 12: pp. 895-904 38/nm1469" target="_blank" title="It opens in new window">CrossRef
    41. Mahauad-Fernandez, WD, Jones, PH, Okeoma, CM (2014) Critical role for BST-2 in acute Chikungunya virus infection. J Gen Virol 95: pp. 2450-2461 3-0" target="_blank" title="It opens in new window">CrossRef
    42. Fatemi, H, Chahbouni, S, Jayi, S, Moumna, K, Melhouf, MA, Bannani, A, Mesbahi, O, Amarti, A (2012) Luminal B tumors are the most frequent molecular subtype in breast cancer of North African women: an immunohistochemical profile study from Morocco. Diagn Pathol 7: pp. 170 CrossRef
    43. Fawzi, ASE (2013) The prognostic significance of the luminal A, luminal B, basal and Her 2 neu subtypes of breast cancer in Saudi women. Open Breast Cancer J 5: pp. 16-22 30613002" target="_blank" title="It opens in new window">CrossRef
    44. Woopen, H, Sehouli, J (2009) Current and future options in the treatment of malignant ascites in ovarian cancer. Anticancer Res 29: pp. 3353-3359
    45. Ayantunde, AA, Parsons, SL (2007) Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann Oncol 18: pp. 945-949 3/annonc/mdl499" target="_blank" title="It opens in new window">CrossRef
    46. Frampton, JE (2012) Catumaxomab: in malignant ascites. Drugs 72: pp. 1399-1410 CrossRef
    47. Mackey, MF, Barth, RJ, Noelle, RJ (1998) The role of CD40/CD154 interactions in the priming, differentiation, and effector function of helper and cytotoxic T cells. J Leukoc Biol 63: pp. 418-428
    48. Petrelli, F, Borgonovo, K, Lonati, V, Elia, S, Barni, S (2013) Regression of liver metastases after treatment with intraperitoneal catumaxomab for malignant ascites due to breast cancer. Target Oncol 8: pp. 291-294 3-012-0240-y" target="_blank" title="It opens in new window">CrossRef
    49. Buckman, R, Angelis, C, Shaw, P, Covens, A, Osborne, R, Kerr, I, Reed, R, Michaels, H, Woo, M, Reilly, R, Law, J, Baumal, R, Groves, E, Marks, A (1992) Intraperitoneal therapy of malignant ascites associated with carcinoma of ovary and breast using radioiodinated monoclonal antibody 2G3. Gynecol Oncol 47: pp. 102-109 CrossRef
    50. Dolcetti, L, Marigo, I, Mantelli, B, Peranzoni, E, Zanovello, P, Bronte, V (2008) Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett 267: pp. 216-225 3.012" target="_blank" title="It opens in new window">CrossRef
    51. Talmadge, JE (2007) Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 13: pp. 5243-5248 32.CCR-07-0182" target="_blank" title="It opens in new window">CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1465-5411
文摘
Introduction Several innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers. Methods Meta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival. In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion. Results BST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion. Conclusions BST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700