Numerical investigation of a standing-wave thermoacoustic device
详细信息    查看全文
  • 作者:M.Z. Dar Ramdane ; A. Khorsi
  • 关键词:CFD ; thermoacoustic device ; stack temperature gradient ; acoustic power
  • 刊名:Thermophysics and Aeromechanics
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:22
  • 期:3
  • 页码:313-318
  • 全文大小:449 KB
  • 参考文献:1. S.H. Tasnim, S. Mahmud, and R.A. Fraser, Effects of variation in working fluids and operating conditions on the performance of a thermoacoustic refrigerator, Inter. Commun. Heat and Mass Transfer, 2012, Vol. 39, P. 762-68.CrossRef
    2. H. Hatori, T. Biwa, and T. Yazaki, How to build a loaded thermoacoustic engine, J. Appl. Phys., 2012, Vol. 111, No. 7, P. 074905-73710.CrossRef ADS
    3. S. Backhaus, E. Tward, and M. Petach, Traveling-wave thermoacoustic electric generator, Appl. Phys. Lett., 2004, Vol. 85, P. 1085-087.CrossRef ADS
    4. G.W. Swift and J.J. Wollan, Thermoacoustics for liquefaction of natural gas, GasTIPS. 2002, Vol. 8, No. 4, P. 21-6.
    5. N. Cao, J. Olson, G.W. Swift, and S. Chen, Energy flux density in a thermoacoustic couple, J. Acoust. Soc. Am., 1996, Vol. 99, No. 6, P. 3456-464.CrossRef ADS
    6. A.S. Worlikar and O.M. Knio, Numerical simulation of thermoacoustic refrigerators, J. Comput. Phys., 1996, Vol. 127, P. 424-51.MATH CrossRef ADS
    7. E. Besnoin and O.M. Knio, Numerical study of thermoacoustic heat exchangers in the thin plate limit, Numer. Heat Transfer, Part A: Applications, 2001, Vol. 40, P. 445-71.CrossRef ADS
    8. E. Besnoin, Numerical study of thermoacoustic heat exchangers. PhD thesis, Johns Hopkins University, Baltimore, Maryland, 2001.
    9. D. Marx and P. Blanc-Benon, Numerical simulation of stack-heat exchangers coupling in a thermoacoustic refrigerator, AIAA J., 2004, Vol. 42, P. 1338-347.CrossRef ADS
    10. L.A.J. Nijeholt, M.E.H. Tijani, and S. Spoelstra, Simulation of a traveling wave thermoacoustic engine using computational fluid dynamics, J. Acoust. Soc. Am., 2005, Vol. 118, No. 4, P. 2265-270.CrossRef ADS
    11. G. Yu, W. Dai, and E. Luo, CFD simulation of a 300 Hz thermoacoustic standing wave engine, Cryogenics, 2010, Vol. 50, No. 9, P. 615-22.CrossRef ADS
    12. F. Zink, J. Vipperman, and L. Schaefer, CFD simulation of a thermoacoustic engine with coiled resonator, Inter. Commun. Heat and Mass Transfer, 2010, Vol. 37, No. 3, P. 226-29.CrossRef
    13. F. Zink, J. Vipperman, and L. Schaefer, CFD simulation of thermoacoustic cooling, Int. J. Heat and Mass Transfer, 2010, Vol. 53, No. 19-20, P. 3940-946.CrossRef
    14. O. Hireche, C. Weisman, D. Baltean-Carlés, P. Le Quéré, and L. Bauwens, Low mach number analysis of idealized thermoacoustic engines with numerical solution, J. Acoust. Soc. Am., 2010, Vol. 128, No. 6, P. 3438-448.CrossRef ADS
    15. G. Swift, Thermoacoustics, Springer Handbook of Acoustics, Springer, New York, 2007, P. 239-55.
  • 作者单位:M.Z. Dar Ramdane (1)
    A. Khorsi (2)

    1. University of Sciences and Technology–Mohamed Boudiaf, Oran, Algeria
    2. Preparatory school in sciences and technologies of Oran, Oran, Algeria
  • 刊物主题:Thermodynamics;
  • 出版者:Springer US
  • ISSN:1531-8699
文摘
The thermoacoustic effect concerns conversion of energy between a gas and a solid in the presence of acoustic waves. Although the working principle is well understood, the optimal design of thermoacoustic devices remains a challenge. The present work aims to perform a numerical simulation of a simple standing-wave thermoacoustic device. The analysis of the flow and the prediction of the heat transfer are performed by solving the non-linear unsteady Navier–Stokes equations using the finite volume method implemented in the commercial code ANSYS-CFX. The goal of this work is to study the effect of the stack temperature gradient, on the acoustic pressure and the produced acoustic power. This stack temperature gradient generates the thermoacoustic instability in standing-wave thermoacoustic resonator. The obtained results show an increase of the acoustic pressure and the acoustic power while increasing in the stack temperature gradient. The thermodynamic cycles of the thermoacoustic device are illustrated and observed for the different stack temperature gradients. Keywords CFD thermoacoustic device stack temperature gradient acoustic power

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700