Thermodynamic assessment of ethyl acetate production via ethanol dehydrogenation
详细信息    查看全文
文摘
This paper reports the results of a thermodynamic analysis conducted for ethanol dehydrogenation. In order to be implemented, the computational code required the choice of a representative set of species, which was selected from performance data of Cu-based catalysts conducted with different residence times (W/F) and supports. Although a major by-product, methyl ethyl ketone (MEK) was removed from the assembly, because it has demonstrated to be thermodynamically more stable than the other organic compounds, which led ethanol to be converted to MEK only, the obtained results were quite representative. The two major organic products (ethyl acetate and acetaldehyde) competed with each other, indicating that ethanol is converted to one of the two substances at the expense of the other. Regardless of the residence time or the type of support employed, the catalytic conversions (obtained from the literature) always remained below the thermodynamic threshold, indicating that thermodynamics is essential to foresee catalyst limitations: maximum ethanol conversion and selectivity to ethyl acetate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700