Revisiting El Ni?o Modokis
详细信息    查看全文
  • 作者:Shamal Marathe ; Karumuri Ashok ; P. Swapna ; T. P. Sabin
  • 关键词:El Ni?o ; El Ni?o Modoki ; Teleconnections ; Air–sea interaction ; Coupled processes
  • 刊名:Climate Dynamics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:45
  • 期:11-12
  • 页码:3527-3545
  • 全文大小:6,445 KB
  • 参考文献:Aceituno P (1988) On the functioning of the southern oscillation in the south american sector. Part I: surface climate. Mon Wea Rev 116:505-24CrossRef
    An S-I, Jin F-F (2004) Nonlinearity and asymmetry of ENSO*. J Clim 17:2399-412CrossRef
    Ashok K, Saji NH (2007) On the impacts of ENSO and Indian Ocean dipole events on the sub-regional Indian summer monsoon rainfall. J Nat Hazards. doi:10.-007/?s11069-006-9091-0
    Ashok K, Behera S, Rao SA, Weng H, Yamagata T (2007) El Ni?o Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.-029/-006JC003798 CrossRef
    Ashok K, Tam C-Y, Lee W-J (2009) ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys Res Lett 36:L12705. doi:10.-029/-009GL038847 CrossRef
    Ashok K, Sabin TP, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical Pacific? Geophys Res Lett 39:L02701. doi:10.-029/-011GL050232
    Ashok K, Nagaraju C, Sengupta A, Pai S (2014) Decadal Changes in the relationship between the Indian and Australian summer monsoons. Clim Dyn. doi:10.-007/?s00382-012-1625-4
    Balmaseda MA, Mogensen K, Weaver AT (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. QJR Meteorol Soc 139:1132-161. doi:10.-002/?qj.-063 CrossRef
    Behera S, Yamagata T (2010) Imprint of the El Ni?o Modoki on decadal sea level changes. Geophys Res Lett 37:L23702. doi:10.-029/-010GL045936
    Behera SK, Rao SA, Saji HN, Yamagata T (2003) Comments on “a cautionary note on the interpretation of EOFs- J Clim 16:1087-093CrossRef
    Bejarano L, Jin FF (2008) Coexistence of equatorial coupled modes of ENSO*. J Clim 21:3051-067CrossRef
    Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163-72CrossRef
    Cai W, Cowan T (2009) La Nina Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805. doi:10.-029/-009GL037885 CrossRef
    Capotondi A et al (2014) Understanding ENSO diversity. Bull Am Meteorol Soc. doi:10.-175/?BAMS-D-13-00117.-
    Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev 136:2999-017CrossRef
    Chen G, Tam C-Y (2010) Different impact of two kinds of Pacific Ocean warming on tropical cyclone frequency over western North Pacific. Geophys Res Lett 37:L01803. doi:10.-029/-009GL041708
    Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6(1):3-3
    Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553-97. doi:10.-002/?qj.-28 CrossRef
    Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the north Pacific during boreal winter since 1900. J Clim 17:3109-124CrossRef
    Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845-862. doi:10.-002/?joc.-31 CrossRef
    Dommenget D, Latif M (2002) A cautionary note on the interpretation of EOFs. J Clim 15:216-25. doi:10.-175/-520-0442(2002)015<0216:?ACNOTI>2.-.?CO;2 CrossRef
    Donguy JR, Dessier A (1983) El Ni?o-like events observed in the tropical Pacific. Mon Wea Rev 111:2136-139. doi:10.-175/-520-0442(2002)015<0216:?ACNOTI>2.-.?CO;2 CrossRef
    Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi–sea surface temperature ensemble experiments with high-resolution meteorological research institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117(D16118):668. doi:10.-029/-012JD017874.-1
    Gierach MM, Lee T, Turk D, McPhaden MJ (2012) Biological response to the1997-998 and 2009-010 El Ni?o events in the equatorial Pacific Ocean. Geophys Res Lett 39:L10602. doi:10.-029/-012GL051103
    Giese BS, Ray S (2011) El Ni?o variability in simple ocean data assimilation (SODA), 1871-008. J Geophys Res 116:C02024. doi:10.-029/-010JC006695
    Guilyardi E, Pascale B, Jin F-F, Kim ST, Kolasinski M, Li T, Musat I (2009) Atmosphere feedbacks during ENSO in a Coupled GCM with a modified atmospheric convection scheme. J Clim 22:5698-718CrossRef
    Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Ni?o. Geophys Res Lett 36:L19713. doi:10.-029/-009GL040100 CrossRef
    Jeong HI et al (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two types of ENSO during boreal winter. Clim Dyn. doi:10.-007/?s00382-012-1359-3
    Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708. doi:10.-029/-006GL027221 CrossRef
    Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26:4816-827CrossRef
    Jolliffe IT (1989a) Ro
  • 作者单位:Shamal Marathe (1)
    Karumuri Ashok (1) (2)
    P. Swapna (1)
    T. P. Sabin (1)

    1. Center for Climate Change Research, Indian Institute of Tropical Meteorology, Pune, India
    2. Centre for Earth and Space Sciences, University of Hyderabad, Hyderabad, 500046, India
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geophysics and Geodesy
    Meteorology and Climatology
    Oceanography
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0894
文摘
The suggestion that there exist two types of El Ni?o in the tropical Pacific has generated a debate in the community. Applying various linear and non-linear approaches and composite analysis technique on observed and reanalyzed climate datasets primarily for the 1950-010 period, we revisit the variability of the tropical Pacific in the light of this debate. Our objective is to examine whether the proposed El Ni?o Modokis need a classification distinct from canonical El Ni?os. Even if the distinction is subject to short data records, we demonstrate that the El Ni?o Modoki events indeed display a seasonal evolution and teleconnections different from the canonical El Ni?os, and that the distinction is not subject to inclusion of the two extreme El Ni?os 1982 and 1997 as canonical El Ni?os. We show that the El Ni?o Modoki events are not an artifact associated with the orthogonality constraint associated with the EOF technique. Our cluster analysis shows that evolutions of the canonical El Ni?o and El Ni?o Modokis through various seasons differ from one another. Importantly, the dynamic and thermodynamic air–sea coupling strength is distinctly different between the El Ni?o Modoki and the canonical El Ni?o events. We find that, dynamic feedback intensity is stronger for El Ni?o Modoki (canonical El Ni?o) during boreal summer (winter); though the air–sea coupling strength, a major contributor to Bjerknes feedback, is maximum for Modokis during the developing stages, it decreases thereafter. In case of thermodynamic feedback intensity, SST-wind-evaporation feedback is dominant for El Ni?os while SST-SHF feedback is important during El Ni?o Modokis. However, we find that the thermodynamic feedback values significantly differ across the flux datasets. Keywords El Ni?o El Ni?o Modoki Teleconnections Air–sea interaction Coupled processes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700