Diffusion in Mixtures of Reacting Thermoelastic Solids
详细信息    查看全文
  • 作者:A. Morro
  • 关键词:Thermoelastic solids ; Reactive solids ; Diffusion fluxes ; 74A30 ; 74A65 ; 74F20
  • 刊名:Journal of Elasticity
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:123
  • 期:1
  • 页码:59-84
  • 全文大小:1,242 KB
  • 参考文献:1. Araujo, R.P., McElwain, D.L.S.: A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation. SIAM J. Appl. Math. 65, 1261–1284 (2005) CrossRef MathSciNet MATH
    2. Baek, S., Srinivasa, A.R.: Diffusion of a fluid through an elastic solid undergoing large deformation. Int. J. Non-Linear Mech. 39, 201–218 (2004) CrossRef MATH
    3. Bi, Z., Sekerka, R.F.: Phase-field model of solidification of a binary alloy. Physica A 261, 95–106 (1998) CrossRef ADS
    4. Bowen, R.M.: Toward a thermodynamics and mechanics of mixtures. Arch. Ration. Mech. Anal. 24, 370–403 (1967) CrossRef MathSciNet MATH
    5. Bowen, R.M.: The thermochemistry of a reacting mixture of elastic materials with diffusion. Arch. Ration. Mech. Anal. 34, 97–110 (1969) CrossRef MathSciNet MATH
    6. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics 3. Academic Press, New York (1976)
    7. Bowen, R.M., Wiese, J.C.: Diffusion in mixtures of elastic materials. Int. J. Eng. Sci. 7, 689–722 (1969) CrossRef MATH
    8. Buonsanti, M., Fosdick, R., Royer-Carfagni, G.: Chemomechanical equilibrium of bars. J. Elast. 84, 167–188 (2006) CrossRef MathSciNet MATH
    9. Cahn, J.C.: On spinodal decomposition. Acta Metall. 9, 795–801 (1961) CrossRef
    10. Carlson, D.E.: Linear thermoelasticity. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VIa/2. Springer, New York (1972)
    11. De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)
    12. Echebarria, B., Folch, R., Karma, A., Plapp, M.: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70, 061604 (2004) CrossRef ADS
    13. Fried, E., Gurtin, M.E.: Coherent solid-state phase transitions with atomic diffusion: a thermomechanical treatment. J. Stat. Phys. 95, 1361–1427 (1999) CrossRef ADS MathSciNet MATH
    14. Fried, E., Sellers, S.: Theory for atomic diffusion on fixed and deformable crystal lattices. J. Elast. 59, 67–81 (2000) CrossRef MATH
    15. Gandhi, M.V., Rajagopal, K.R., Wineman, A.S.: Some nonlinear diffusion problems within the context of the theory of interacting continua. Int. J. Eng. Sci. 25, 1441–1457 (1987) CrossRef MATH
    16. Green, A.E., Naghdi, P.M.: On basic equations for mixtures. Q. J. Mech. Appl. Math. 22, 427–438 (1969) CrossRef MATH
    17. Gurtin, M.E.: Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance. Physica D 92, 178–192 (1992) ADS MathSciNet
    18. Heida, M., Málek, J., Rajagopal, K.R.: On the development and generalizations of Cahn-Hilliard equations within a thermodynamic framework. Z. Angew. Math. Phys. 63, 145–169 (2012) CrossRef MathSciNet MATH
    19. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954) MATH
    20. Iesan, D.: On the theory of mixtures of elastic solids. J. Elast. 35, 251–268 (1994) CrossRef MathSciNet MATH
    21. Jabbour, M.E., Bhattacharya, K.: A continuum theory of multispecies thin solid film growth by chemical vapor deposition. J. Elast. 73, 13–74 (2003) CrossRef MathSciNet MATH
    22. Klisch, S.M.: A mixture of elastic materials with different constituent temperatures and internal constraints. Int. J. Eng. Sci. 40, 805–828 (2002) CrossRef MathSciNet MATH
    23. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transitions. Proc. R. Soc. Lond. Ser. A 454, 2617–2654 (1998) CrossRef MathSciNet MATH
    24. Mielke, A.: Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions. Discrete Contin. Dyn. Syst., Ser. S 6, 479–499 (2013) CrossRef MathSciNet MATH
    25. Morro, A.: Phase-field models for fluid mixtures. Math. Comput. Model. 45, 1042–1052 (2007) CrossRef MathSciNet MATH
    26. Morro, A.: Governing equations in non-isothermal diffusion. Int. J. Non-Linear Mech. 55, 90–97 (2013) CrossRef ADS
    27. Morro, A.: Balance and constitutive equations for diffusion in mixtures of fluids. Meccanica 49, 2109–2123 (2014) CrossRef MathSciNet MATH
    28. Müller, I.: A thermodynamic theory of mixtures of fluids. Arch. Ration. Mech. Anal. 28, 1–39 (1968) CrossRef MATH
    29. Müller, I.: Thermodynamics of mixtures of fluids. J. Méc. 14, 267–303 (1975) MATH
    30. Müller, I.: Thermodynamics of mixtures and phase field theory. Int. J. Solids Struct. 38, 1105–1113 (2001) CrossRef MATH
    31. Passman, S.L., Nunziato, J.W.: A theory of multiphase mixtures. In: Truesdell, C. (ed.) Rational Thermodynamics. Springer, New-York (1984)
    32. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World Scientific, Singapore (1996)
    33. Sekerka, R.F.: Similarity solutions for a binary diffusion couple with diffusivity and density dependent on composition. Prog. Mater. Sci. 49, 511–536 (2004) CrossRef
    34. Shi, J.J.-J., Rajagopal, K.R., Wineman, A.S.: Applications of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media. Int. J. Eng. Sci. 19, 871–889 (1981) CrossRef MATH
    35. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984), Chap. 5 CrossRef MATH
    36. Truesdell, C., Noll, W.: The non-linear field theory of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3, pp. 17–19. Springer, Berlin (1965)
    37. Volokh, K.Y.: Stresses in growing soft tissues. Acta Biomater. 2, 493–504 (2006) CrossRef
    38. Wheeler, A.A., Boettinger, W.J., McFadden, G.B.: Phase-field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45, 7424–7439 (1992) CrossRef ADS
  • 作者单位:A. Morro (1)

    1. DIBRIS, Via Opera Pia 13, 16145, Genova, Italy
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mechanics
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-2681
文摘
A chemically reacting mixture of elastic solids is considered. As a constitutive assumption, the peculiar functions (such as the free energy, the entropy, and the stress) of a constituent are taken to be functions of a set of variables pertaining to that constituent. The interaction terms, namely the growth of mass, linear momentum, and energy, are allowed to depend on the set of variables pertaining to all of the constituents. While the dependence on the mass density is usually disregarded, the paper accounts also for such a dependence, which seems to be in order especially in connection with reacting mixtures where the mass densities change also in the reference configuration. The thermodynamic restrictions are derived by starting from the non-negative value of the sum of entropy growths and involving the properties of the peculiar functions. The results so obtained for stresses and chemical potentials are examined in connection with similar schemes (swelling solids). While the correct relations for the mass diffusion flux arise from balance equations, an analysis is given of whether and how Fick-type models are acceptable possibly depending on the fluid or solid character of the mixture. Keywords Thermoelastic solids Reactive solids Diffusion fluxes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700