The Fragility of Thermoelectric Power Factor in Cross-Plane Superlattices in the Presence of Nonidealities: A Quantum Transport Simulation Approach
详细信息    查看全文
  • 作者:M. Thesberg ; M. Pourfath ; N. Neophytou ; H. Kosina
  • 关键词:Thermoelectric ; superlattices ; quantum transport ; thermoelectric power factor ; Seebeck coefficient ; energy filtering
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:45
  • 期:3
  • 页码:1584-1588
  • 全文大小:661 KB
  • 参考文献:1.M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).CrossRef
    2.L.D. Zhao, S.H. Lo, J.Q. He, L. Hao, K. Biswas, J. Androulakis, C.I. Wu, T.P. Hogan, D.Y. Chung, V.P. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 20476 (2011).CrossRef
    3.D.M. Rowe and G. Min, AIP Conf. Proc. 316, 339 (1994).CrossRef
    4.Y. Nishio and T. Hirano, Jpn. J. Appl. Phys. 36, 170 (1997).CrossRef
    5.G.D. Mahan and L.M. Woods, Phys. Rev. Lett. 80, 4016 (1998).CrossRef
    6.D. Vashaee and A. Shakouri, Phys. Rev. Lett. 92, 106103 (2004).CrossRef
    7.J.M.O. Zide, D. Vashaee, Z.X. Bian, G. Zeng, J.E. Bowers, A. Shakouri, and A.C. Gossard, Phys. Rev. B 74, 205335 (2006).CrossRef
    8.A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 205302 (2009).CrossRef
    9.A. Shakouri, Annu. Rev. Mater. Res. 41, 399 (2011).CrossRef
    10.R. Kim and M. Lundstrom, J. Appl. Phys. 110, 034511 (2011).CrossRef
    11.R. Kim and M.S. Lundstrom, J. Appl. Phys. 111, 024508 (2012).CrossRef
    12.D. Narducci, E. Selezneva, G. Cerofolini, S. Frabboni, and G. Ottaviani, J. Solid State Chem. 193, 19 (2012).CrossRef
    13.W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).CrossRef
    14.H. Alam and S. Ramakrishna, Nano Energy 2, 190 (2013).CrossRef
    15.N. Neophytou and H. Kosina, J. Appl. Phys. 114, 044315 (2013).CrossRef
    16.N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, and D. Narducci, Nanotechnology 24, 205402 (2013).CrossRef
    17.J.-H. Bahk, Z. Bian, and A. Shakouri, Phys. Rev. B 89, 075204 (2014).CrossRef
    18.J.-H. Bahk and A. Shakouri, Appl. Phys. Lett. 105, 052106 (2014).CrossRef
    19.S. Datta, Quantum Transport: Atom to Transistor (Cambridge, NY: Cambridge University Press, 2005).CrossRef
    20.R. Lake, G. Klimeck, R.C. Bowen, and D. Jovanovic, J. Appl. Phys. 81, 7845 (1997).CrossRef
    21.S.O. Koswatta, S. Hasan, M.S. Lundstrom, and M.P. Anantram, IEEE Trans. Electron Dev. 54, 2339 (2007).CrossRef
  • 作者单位:M. Thesberg (1)
    M. Pourfath (1)
    N. Neophytou (2)
    H. Kosina (1)

    1. Institute for Microelectronics, TU Wien, Gusshausstrasse 27-29/E360, 1040, Vienna, Austria
    2. University of Warwick, Coventry, CV4 7AL, UK
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
Energy filtering has been put forth as a promising method for achieving large thermoelectric power factors in thermoelectric materials through Seebeck coefficient improvement. Materials with embedded potential barriers, such as cross-plane superlattices, provide energy filtering, in addition to low thermal conductivity, and could potentially achieve high figure of merit. Although there exist many theoretical works demonstrating Seebeck coefficient and power factor gains in idealized structures, experimental support has been scant. In most cases, the electrical conductivity is drastically reduced due to the presence of barriers. In this work, using quantum-mechanical simulations based on the nonequilibrium Green’s function method, we show that, although power factor improvements can theoretically be observed in optimized superlattices (as pointed out in previous studies), different types of deviations from the ideal potential profiles of the barriers degrade the performance, some nonidealities being so significant as to negate all power factor gains. Specifically, the effect of tunneling due to thin barriers could be especially detrimental to the Seebeck coefficient and power factor. Our results could partially explain why significant power factor improvements in superlattices and other energy-filtering nanostructures mainly fail to be realized, despite theoretical predictions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700