Efficiency of a Sandwiched Thermoelectric Material with a Graded Interlayer and Temperature-Dependent Properties
详细信息    查看全文
  • 作者:T. T. Wallace ; Z.-H. Jin ; J. Su
  • 关键词:Thermoelectric material ; functionally graded material ; segmented material ; energy conversion efficiency ; temperature ; dependent properties
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:45
  • 期:4
  • 页码:2142-2149
  • 全文大小:1,272 KB
  • 参考文献:1.M.S. El-Genk and H.H. Saber, Thermoelectrics Handbook: Macro to Nano, ed. D.W. Rowe (New York: Taylor & Francis, 2006), Chapter 43.
    2.L. Anatychuk, L.N. Vikhor, L.T. Strutynska, and I.S. Termena, J. Electron. Mater. 40, 957 (2011).CrossRef
    3.V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 2893 (2002).CrossRef
    4.E. Muller, C. Drasar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng. A 362, 17 (2003).CrossRef
    5.V.L. Kuznetsov, Thermoelectrics Handbook: Macro to Nano, ed. D.W. Rowe (New York: Taylor & Francis, 2006), Chapter 38.
    6.E. Mueller, K. Zabrocki, C. Goupil, G.J. Snyder, and W. Seifert, Thermoelectrics and Its Energy Harvesting, Vol. 1, ed. D.M. Rowe (New York: Taylor & Francis, 2012).
    7.L.I. Anatychuk and L.N. Vikhor, Thermoelectricity Vol 4: Functionally Graded Thermoelectric Materials (Chernivtsi: Bukrek, 2012).
    8.G.D. Mahan, J. Appl. Phys. 70, 4551 (1991).CrossRef
    9.K. Zabrocki, E. Muller, and W. Seifert, J. Electron. Mater. 39, 1724 (2010).CrossRef
    10.Z.-H. Jin and T.T. Wallace, J. Electron. Mater. 44, 1444 (2015).CrossRef
    11.G.J. Snyder, Thermoelectrics Handbook: Macro to Nano, ed. D.W. Rowe (New York: Taylor & Francis, 2006), Chapter 9.
    12.Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRef
    13.Z. He, C. Stiewe, D. Platzek, G. Karpinski, E. Muller, S. Li, M. Toprak, and M. Muhammed, J. Appl. Phys. 101, 043707 (2007).CrossRef
    14.J.R. Sootsman, J. He, V.P. Dravid, C.P. Li, C. Uher, and M.G. Kanatzidis, J. Appl. Phys. 105, 083718 (2009).CrossRef
    15.S. Butt, W. Xu, M.U. Farooq, G.K. Ren, F. Mohmed, Y. Lin, and C.W. Nan, J. Am. Ceram. Soc. 98, 1230 (2015).CrossRef
    16.E.H. Kerner, Proc. Phys. Soc. B 69, 802 (1956).CrossRef
    17.Z. Hashin and S. Strikman, J. Appl. Phys. 33, 3125 (1962).CrossRef
  • 作者单位:T. T. Wallace (1) (2)
    Z.-H. Jin (1)
    J. Su (3)

    1. Department of Mechanical Engineering, University of Maine, Orono, ME, 04469, USA
    2. Marine Engine Testing and Emissions Laboratory, Maine Maritime Academy, Castine, ME, 04420, USA
    3. Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA, 23681, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
This paper investigates the energy conversion efficiency for a sandwiched thermoelectric (TE) material with a graded interlayer and temperature-dependent properties. The graded interlayer can be modeled as a composite of the two homogeneous end material members to achieve continuously varying composition and properties, thus eliminating the electrical contact resistance at the interfaces of segmented TE materials. The temperature distribution and efficiency are obtained by a semianalytical recurrence relation and a simple iteration technique. In the numerical examples, we consider a sandwiched TE element consisting of nanostructured Bi2Te3 at the cold-end side, nanostructured PbTe at the hot-end side, and a graded interlayer of Bi2Te3–PbTe composite. The numerical results show that the peak efficiency of the sandwiched TE material with no contact resistance is higher than that of segmented Bi2Te3/PbTe with contact resistance at the sharp interface between Bi2Te3 and PbTe. The peak efficiency of the sandwiched material is also influenced by the location of and gradation profile in the graded interlayer. Finally, it is found that temperature dependence of properties decreases the efficiencies of Bi2Te3 and PbTe.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700