Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules
详细信息    查看全文
  • 作者:Saara Tikka ; Evanthia Monogioudi ; Athanasios Gotsopoulos…
  • 关键词:Classic infantile NCL ; Laser capture microdissection ; LC ; MSE ; lysosomal storage disorders ; MALDI ; MSI ; PPT1palmitoyl ; protein thioesterase 1 ; RNA sequence analysis
  • 刊名:NeuroMolecular Medicine
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:18
  • 期:1
  • 页码:109-133
  • 全文大小:10,490 KB
  • 参考文献:Aby, E., Gumps, K., Roth, A., Sigmon, S., Jenkins, S. E., Kim, J. J., et al. (2013). Mutations in palmitoyl-protein thioesterase 1 alter exocytosis and endocytosis at synapses in Drosophila larvae. Fly (Austin), 7(4), 267–279.CrossRef
    Ahtiainen, L., Kolikova, J., Mutka, A. L., Luiro, K., Gentile, M., Ikonen, E., et al. (2007). Palmitoyl protein thioesterase 1 (Ppt1)-deficient mouse neurons show alterations in cholesterol metabolism and calcium homeostasis prior to synaptic dysfunction. Neurobiology of Diseases, 28(1), 52–64.CrossRef
    Ahtiainen, L., Luiro, K., Kauppi, M., Tyynela, J., Kopra, O., & Jalanko, A. (2006). Palmitoyl protein thioesterase 1 (PPT1) deficiency causes endocytic defects connected to abnormal saposin processing. Experimental Cell Research, 312(9), 1540–1553.PubMed CrossRef
    Ahtiainen, L., Van Diggelen, O. P., Jalanko, A., & Kopra, O. (2003). Palmitoyl protein thioesterase 1 is targeted to the axons in neurons. The Journal of Comparative Neurology, 455(3), 368–377.PubMed CrossRef
    Anderson, G. W., Goebel, H. H., & Simonati, A. (2013). Human pathology in NCL. Biochimica et Biophysica Acta, 1832(11), 1807–1826.PubMed CrossRef
    Ba, W., van der Raadt, J., & Nadif Kasri, N. (2013). Rho GTPase signaling at the synapse: Implications for intellectual disability. Experimental Cell Research, 319(15), 2368–2374.PubMed CrossRef
    Bible, E., Gupta, P., Hofmann, S. L., & Cooper, J. D. (2004). Regional and cellular neuropathology in the palmitoyl protein thioesterase-1 null mutant mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiology of Diseases, 16(2), 346–359.CrossRef
    Blom, T., Schmiedt, M. L., Wong, A. M., Kyttala, A., Soronen, J., Jauhiainen, M., et al. (2013). Exacerbated neuronal ceroid lipofuscinosis phenotype in Cln1/5 double-knockout mice. Disease Models & Mechanisms., 6(2), 342–357.CrossRef
    Boustany, R. M. (2013). Lysosomal storage diseases—The horizon expands. Nature Reviews. Neurology, 9(10), 583–598.PubMed CrossRef
    Braakman, R. B., Luider, T. M., Martens, J. W., Foekens, J. A., & Umar, A. (2011). Laser capture microdissection applications in breast cancer proteomics. Methods in Molecular Biology, 755, 143–154.PubMed CrossRef
    Braakman, R. B., Tilanus-Linthorst, M. M., Liu, N. Q., Stingl, C., Dekker, L. J., Luider, T. M., et al. (2012). Optimized nLC-MS workflow for laser capture microdissected breast cancer tissue. Journal of Proteomics, 75(10), 2844–2854.PubMed CrossRef
    Bronson, R. T., Donahue, L. R., Johnson, K. R., Tanner, A., Lane, P. W., & Faust, J. R. (1998). Neuronal ceroid lipofuscinosis (nclf), a new disorder of the mouse linked to chromosome 9. American Journal of Medical Genetics, 77(4), 289–297.PubMed CrossRef
    Caldwell, R. L., & Caprioli, R. M. (2005). Tissue profiling by mass spectrometry: A review of methodology and applications. Molecular and Cellular Proteomics, 4(4), 394–401.PubMed CrossRef
    Camp, L. A., & Hofmann, S. L. (1993). Purification and properties of a palmitoyl-protein thioesterase that cleaves palmitate from H-Ras. Journal of Biological Chemistry, 268(30), 22566–22574.PubMed
    Cao, Y., Staropoli, J. F., Biswas, S., Espinola, J. A., MacDonald, M. E., Lee, J. M., et al. (2011). Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS ONE, 6(2), e17118.PubMedCentral PubMed CrossRef
    Chan, C. H., Want, E. J., Geraets, R., Weber, K., Hersrud, S., & Pearce, D. A. (2012) Biomarker Discovery in Batten Disease. In NCL2012, Roayl Holloway College, London, UK, 2012.
    Cho, S., & Dawson, G. (2000). Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. Journal of Neurochemistry, 74(4), 1478–1488.PubMed CrossRef
    Chow, E., Mottahedeh, J., Prins, M., Ridder, W., Nusinowitz, S., & Bronstein, J. M. (2005). Disrupted compaction of CNS myelin in an OSP/Claudin-11 and PLP/DM20 double knockout mouse. Molecular and Cellular Neuroscience, 29(3), 405–413.PubMed CrossRef
    Chrast, R., Saher, G., Nave, K. A., & Verheijen, M. H. (2011). Lipid metabolism in myelinating glial cells: Lessons from human inherited disorders and mouse models. Journal of Lipid Research, 52(3), 419–434.PubMedCentral PubMed CrossRef
    Chu-LaGraff, Q., Blanchette, C., O’Hern, P., & Denefrio, C. (2010). The batten disease palmitoyl protein thioesterase 1 gene regulates neural specification and axon connectivity during drosophila embryonic development. PLoS ONE, 5(12), e14402.PubMedCentral PubMed CrossRef
    Conforti, L., Gilley, J., & Coleman, M. P. (2014). Wallerian degeneration: An emerging axon death pathway linking injury and disease. Nature Reviews Neuroscience, 15(6), 394–409.PubMed CrossRef
    Das, A. M., Jolly, R. D., & Kohlschutter, A. (1999). Anomalies of mitochondrial ATP synthase regulation in four different types of neuronal ceroid lipofuscinosis. Molecular Genetics and Metabolism, 66(4), 349–355.PubMed CrossRef
    Das, A. M., von Harlem, R., Feist, M., Lucke, T., & Kohlschutter, A. (2001). Altered levels of high-energy phosphate compounds in fibroblasts from different forms of neuronal ceroid lipofuscinoses: Further evidence for mitochondrial involvement. European Journal of Paediatric Neurology, 5(Suppl A), 143–146.PubMed CrossRef
    D’Aversa, T. G., Eugenin, E. A., Lopez, L., & Berman, J. W. (2013). Myelin basic protein induces inflammatory mediators from primary human endothelial cells and blood
    ain barrier disruption: Implications for the pathogenesis of multiple sclerosis. Neuropathology and Applied Neurobiology, 39(3), 270–283.PubMedCentral PubMed CrossRef
    de Monasterio-Schrader, P., Jahn, O., Tenzer, S., Wichert, S. P., Patzig, J., & Werner, H. B. (2012). Systematic approaches to central nervous system myelin. Cellular and Molecular Life Sciences, 69(17), 2879–2894.PubMed CrossRef
    Devaux, J., & Gow, A. (2008). Tight junctions potentiate the insulative properties of small CNS myelinated axons. Journal of Cell Biology, 183(5), 909–921.PubMedCentral PubMed CrossRef
    Eberlin, L. S., Liu, X., Ferreira, C. R., Santagata, S., Agar, N. Y., & Cooks, R. G. (2011). Desorption electrospray ionization then MALDI mass spectrometry imaging of lipid and protein distributions in single tissue sections. Analytical Chemistry, 83(22), 8366–8371.PubMedCentral PubMed CrossRef
    Elshatory, Y., Brooks, A. I., Chattopadhyay, S., Curran, T. M., Gupta, P., Ramalingam, V., et al. (2003). Early changes in gene expression in two models of Batten disease. FEBS Letters, 538(1–3), 207–212.PubMed CrossRef
    Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.PubMed CrossRef
    Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research. Brain Research Reviews, 39(1), 29–54.PubMed CrossRef
    Findley, M. K., & Koval, M. (2009). Regulation and roles for claudin-family tight junction proteins. IUBMB Life, 61(4), 431–437.PubMedCentral PubMed CrossRef
    Gerdts, J., Brace, E. J., Sasaki, Y., DiAntonio, A., & Milbrandt, J. (2015). SARM1 activation triggers axon degeneration locally via NAD(+) destruction. Science, 348(6233), 453–457.PubMedCentral PubMed CrossRef
    Goswami, R., Ahmed, M., Kilkus, J., Han, T., Dawson, S. A., & Dawson, G. (2005). Differential regulation of ceramide in lipid-rich microdomains (rafts): Antagonistic role of palmitoyl:protein thioesterase and neutral sphingomyelinase 2. Journal of Neuroscience Research, 81(2), 208–217.PubMed CrossRef
    Groh, J., Kuhl, T. G., Ip, C. W., Nelvagal, H. R., Sri, S., Duckett, S., et al. (2013). Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain, 136(Pt 4), 1083–1101.PubMed CrossRef
    Gupta, P., Soyombo, A. A., Atashband, A., Wisniewski, K. E., Shelton, J. M., Richardson, J. A., et al. (2001). Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13566–13571.PubMedCentral PubMed CrossRef
    Haltia, M. (2006). The neuronal ceroid-lipofuscinoses: from past to present. Biochimica et Biophysica Acta, 1762(10), 850–856.PubMed CrossRef
    Haltia, M., Rapola, J., & Santavuori, P. (1973a). Infantile type of so-called neuronal ceroid-lipofuscinosis. Histological and electron microscopic studies. Acta Neuropathologica, 26(2), 157–170.PubMed CrossRef
    Haltia, M., Rapola, J., Santavuori, P., & Keranen, A. (1973b). Infantile type of so-called neuronal ceroid-lipofuscinosis. 2. Morphological and biochemical studies. Journal of the Neurological Sciences, 18(3), 269–285.PubMed CrossRef
    Heinonen, O., Kyttala, A., Lehmus, E., Paunio, T., Peltonen, L., & Jalanko, A. (2000). Expression of palmitoyl protein thioesterase in neurons. Molecular Genetics and Metabolism, 69(2), 123–129.PubMed CrossRef
    Hofmann, S. L., Das, A. K., Yi, W., Lu, J. Y., & Wisniewski, K. E. (1999). Genotype-phenotype correlations in neuronal ceroid lipofuscinosis due to palmitoyl-protein thioesterase deficiency. Molecular Genetics and Metabolism, 66(4), 234–239.PubMed CrossRef
    Ikem, A. (2010). Measurement of volatile organic compounds in bottled and tap waters by purge and trap GC–MS: Are drinking water types different? Journal of Food Composition and Analysis, 23(1), 70–77.CrossRef
    Isosomppi, J., Heinonen, O., Hiltunen, J. O., Greene, N. D., Vesa, J., Uusitalo, A., et al. (1999). Developmental expression of palmitoyl protein thioesterase in normal mice. Brain Research. Developmental Brain Research, 118(1–2), 111.PubMed CrossRef
    Jahn, O., Tenzer, S., & Werner, H. B. (2009). Myelin proteomics: Molecular anatomy of an insulating sheath. Molecular Neurobiology, 40(1), 55–72.PubMedCentral PubMed CrossRef
    Jalanko, A., Tyynela, J., & Peltonen, L. (2006). From genes to systems: New global strategies for the characterization of NCL biology. Biochimica et Biophysica Acta, 1762(10), 934–944.PubMed CrossRef
    Jalanko, A., Vesa, J., Manninen, T., von Schantz, C., Minye, H., Fabritius, A. L., et al. (2005). Mice with Ppt1Deltaex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons. Neurobiology of Diseases, 18(1), 226–241.CrossRef
    Kakela, R., Somerharju, P., & Tyynela, J. (2003). Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. Journal of Neurochemistry, 84(5), 10511065.PubMed CrossRef
    Kamate, M., & Hattiholi, V. (2012). Novel neuroimaging finding in palmitoyl protein thioesterase-1-related neuronal ceroid lipofuscinosis. Pediatric Neurology, 46(5), 325–328.PubMed CrossRef
    Karlsson, O., Bergquist, J., & Andersson, M. (2014). Quality measures of imaging mass spectrometry aids in revealing long-term striatal protein changes induced by neonatal exposure to the cyanobacterial toxin beta-N-methylamino-l -alanine (BMAA). Molecular and Cellular Proteomics, 13(1), 93–104.PubMedCentral PubMed CrossRef
    Kielar, C., Maddox, L., Bible, E., Pontikis, C. C., Macauley, S. L., Griffey, M. A., et al. (2007). Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiology of Diseases, 25(1), 150–162.CrossRef
    Kielar, C., Wishart, T. M., Palmer, A., Dihanich, S., Wong, A. M., Macauley, S. L., et al. (2009). Molecular correlates of axonal and synaptic pathology in mouse models of batten disease. Human Molecular Genetics, 18(21), 4066–4080.PubMedCentral PubMed CrossRef
    Kim, S. J., Zhang, Z., Lee, Y. C., & Mukherjee, A. B. (2006). Palmitoyl-protein thioesterase-1 deficiency leads to the activation of caspase-9 and contributes to rapid neurodegeneration in INCL. Human Molecular Genetics, 15(10), 1580–1586.PubMed CrossRef
    Kim, S. J., Zhang, Z., Sarkar, C., Tsai, P. C., Lee, Y. C., Dye, L., et al. (2008). Palmitoyl protein thioesterase-1 deficiency impairs synaptic vesicle recycling at nerve terminals, contributing to neuropathology in humans and mice. The Journal of Clinical Investigation, 118(9), 3075–3086.PubMedCentral PubMed CrossRef
    Koch, S., Scifo, E., Rokka, A., Trippner, P., Lindfors, M., Korhonen, R., et al. (2013). Cathepsin D deficiency induces cytoskeletal changes and affects cell migration pathways in the brain. Neurobiology of Diseases, 50, 107–119.CrossRef
    Kopra, O., Vesa, J., von Schantz, C., Manninen, T., Minye, H., Fabritius, A. L., et al. (2004). A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging. Human Molecular Genetics, 13(23), 2893–2906.PubMed CrossRef
    Kousi, M., Lehesjoki, A. E., & Mole, S. E. (2012). Update on the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Human Mutation, 33(1), 42–63.PubMed CrossRef
    Kuronen, M., Hermansson, M., Manninen, O., Zech, I., Talvitie, M., Laitinen, T., et al. (2012). Galactolipid deficiency in the early pathogenesis of neuronal ceroid lipofuscinosis model Cln8mnd: Implications to delayed myelination and oligodendrocyte maturation. Neuropathology and Applied Neurobiology, 38(5), 471–486.PubMed CrossRef
    Lalowski, M., Magni, F., Mainini, V., Monogioudi, E., Gotsopoulos, A., Soliymani, R., et al. (2013). Imaging mass spectrometry: A new tool for kidney disease investigations. Nephrology, Dialysis, Transplantation, 28(7), 1648–1656.PubMed CrossRef
    Lee, D. W., Banquy, X., Kristiansen, K., Kaufman, Y., Boggs, J. M., & Israelachvili, J. N. (2014). Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers. Proceedings of the National Academy of Sciences of the United States of America, 111(8), E768–E775.PubMedCentral PubMed CrossRef
    Lehrer, S., Roboz, J., Ding, H., Zhao, S., Diamond, E. J., Holland, J. F., et al. (2003). Putative protein markers in the sera of men with prostatic neoplasms. BJU International, 92(3), 223–225.PubMed CrossRef
    Lehtovirta, M., Kyttala, A., Eskelinen, E. L., Hess, M., Heinonen, O., & Jalanko, A. (2001). Palmitoyl protein thioesterase (PPT) localizes into synaptosomes and synaptic vesicles in neurons: implications for infantile neuronal ceroid lipofuscinosis (INCL). Human Molecular Genetics, 10(1), 69–75.PubMed CrossRef
    Leverenz, J. B., Umar, I., Wang, Q., Montine, T. J., McMillan, P. J., Tsuang, D. W., et al. (2007). Proteomic identification of novel proteins in cortical Lewy bodies. Brain Pathology, 17(2), 139–145.PubMed CrossRef
    Liu, N. Q., Braakman, R. B., Stingl, C., Luider, T. M., Martens, J. W., Foekens, J. A., et al. (2012). Proteomics pipeline for biomarker discovery of laser capture microdissected breast cancer tissue. J Mammary Gland Biol Neoplasia, 17(2), 155–164.PubMedCentral PubMed CrossRef
    Luiro, K., Kopra, O., Blom, T., Gentile, M., Mitchison, H. M., Hovatta, I., et al. (2006). Batten disease (JNCL) is linked to disturbances in mitochondrial, cytoskeletal, and synaptic compartments. Journal of Neuroscience Research, 84(5), 1124–1138.PubMed CrossRef
    Lyly, A., Marjavaara, S. K., Kyttala, A., Uusi-Rauva, K., Luiro, K., Kopra, O., et al. (2008). Deficiency of the INCL protein Ppt1 results in changes in ectopic F1-ATP synthase and altered cholesterol metabolism. Human Molecular Genetics, 17(10), 1406–1417.PubMed CrossRef
    Lyly, A., von Schantz, C., Heine, C., Schmiedt, M. L., Sipila, T., Jalanko, A., et al. (2009). Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins. BMC Cell Biology, 10, 83.PubMedCentral PubMed CrossRef
    Macauley, S. L., Pekny, M., & Sands, M. S. (2011). The role of attenuated astrocyte activation in infantile neuronal ceroid lipofuscinosis. Journal of Neuroscience, 31(43), 15575–15585.PubMedCentral PubMed CrossRef
    Maier, S. K., Hahne, H., Gholami, A. M., Balluff, B., Meding, S., Schoene, C., et al. (2013). Comprehensive identification of proteins from MALDI imaging. Molecular and Cellular Proteomics, 12(10), 2901–2910.PubMedCentral PubMed CrossRef
    Mainini, V., Lalowski, M., Gotsopoulos, A., Bitsika, V., Baumann, M., & Magni, F. (2015). MALDI-imaging mass spectrometry on tissues. Methods in Molecular Biology, 1243, 139–164.PubMed CrossRef
    Margolis, R. L., & Ross, C. A. (2003). Diagnosis of Huntington disease. Clinical Chemistry, 49(10), 1726–1732.PubMed CrossRef
    McCarthy, D. P., Richards, M. H., & Miller, S. D. (2012). Mouse models of multiple sclerosis: Experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods in Molecular Biology, 900, 381–401.PubMedCentral PubMed CrossRef
    McDonnell, L. A., Walch, A., Stoeckli, M., & Corthals, G. L. (2014). MSiMass list: A public database of identifications for protein MALDI MS imaging. Journal of Proteome Research, 13(2), 1138–1142.PubMed CrossRef
    Milde, S., Fox, A. N., Freeman, M. R., & Coleman, M. P. (2013a). Deletions within its subcellular targeting domain enhance the axon protective capacity of Nmnat2 in vivo. Scientific Reports, 3, 2567.PubMedCentral PubMed CrossRef
    Milde, S., Gilley, J., & Coleman, M. P. (2013b). Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biology, 11(4), e1001539.PubMedCentral PubMed CrossRef
    Miller, J. N., Kovacs, A. D., & Pearce, D. A. (2015). The novel Cln1R151X mouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapy. Human Molecular Genetics, 24(1), 185–196.PubMedCentral PubMed CrossRef
    Miravalle, L., Calero, M., Takao, M., Roher, A. E., Ghetti, B., & Vidal, R. (2005). Amino-terminally truncated Abeta peptide species are the main component of cotton wool plaques. Biochemistry, 44(32), 10810–10821.PubMed CrossRef
    Morgan, J. P., Magee, H., Wong, A., Nelson, T., Koch, B., Cooper, J. D., et al. (2013). A murine model of variant late infantile ceroid lipofuscinosis recapitulates behavioral and pathological phenotypes of human disease. PLoS ONE, 8(11), e78694.PubMedCentral PubMed CrossRef
    Mutka, A. L., Haapanen, A., Kakela, R., Lindfors, M., Wright, A. K., Inkinen, T., et al. (2010). Murine cathepsin D deficiency is associated with dysmyelination/myelin disruption and accumulation of cholesteryl esters in the brain. Journal of Neurochemistry, 112(1), 193–203.PubMed CrossRef
    Nave, K. A. (2010). Myelination and support of axonal integrity by glia. Nature, 468(7321), 244–252.PubMed CrossRef
    Nave, K. A., & Trapp, B. D. (2008). Axon-glial signaling and the glial support of axon function. Annual Review of Neuroscience, 31, 535–561.PubMed CrossRef
    Newey, S. E., Velamoor, V., Govek, E. E., & Van Aelst, L. (2005). Rho GTPases, dendritic structure, and mental retardation. Journal of Neurobiology, 64(1), 58–74.PubMed CrossRef
    Ng, K. P., Gugiu, B., Renganathan, K., Davies, M. W., Gu, X., Crabb, J. S., et al. (2008). Retinal pigment epithelium lipofuscin proteomics. Molecular and Cellular Proteomics, 7(7), 1397–1405.PubMedCentral PubMed CrossRef
    Ohno, N., Kidd, G. J., Mahad, D., Kiryu-Seo, S., Avishai, A., Komuro, H., et al. (2011). Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. Journal of Neuroscience, 31(20), 7249–7258.PubMedCentral PubMed CrossRef
    Ottis, P., Koppe, K., Onisko, B., Dynin, I., Arzberger, T., Kretzschmar, H., et al. (2012). Human and rat brain lipofuscin proteome. Proteomics, 12(15–16), 2445–2454.PubMed CrossRef
    Palmer, D. N., Barry, L. A., Tyynela, J., & Cooper, J. D. (2013). NCL disease mechanisms. Biochimica et Biophysica Acta, 1832(11), 1882–1893.PubMed CrossRef
    Patzig, J., Jahn, O., Tenzer, S., Wichert, S. P., de Monasterio-Schrader, P., Rosfa, S., et al. (2011). Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. Journal of Neuroscience, 31(45), 16369–16386.PubMed CrossRef
    Pezzini, F., Gismondi, F., Tessa, A., Tonin, P., Carrozzo, R., Mole, S. E., et al. (2011). Involvement of the mitochondrial compartment in human NCL fibroblasts. Biochemical and Biophysical Research Communications, 416(1–2), 159–164.PubMed CrossRef
    Philipson, O., Lord, A., Lalowski, M., Soliymani, R., Baumann, M., Thyberg, J., et al. (2012). The Arctic amyloid-beta precursor protein (AbetaPP) mutation results in distinct plaques and accumulation of N- and C-truncated Abeta. Neurobiol Aging, 33(5), 1010e11010e13.
    Saab, A. S., Tzvetanova, I. D., & Nave, K. A. (2013). The role of myelin and oligodendrocytes in axonal energy metabolism. Current Opinion in Neurobiology, 23(6), 1065–1072.PubMed CrossRef
    Santorelli, F. M., Bertini, E., Petruzzella, V., Di Capua, M., Calvieri, S., Gasparini, P., et al. (1998). A novel insertion mutation (A169i) in the CLN1 gene is associated with infantile neuronal ceroid lipofuscinosis in an Italian patient. Biochemical and Biophysical Research Communications, 245(2), 519–522.PubMed CrossRef
    Schaefer, M. H., Fontaine, J. F., Vinayagam, A., Porras, P., Wanker, E. E., & Andrade-Navarro, M. A. (2012). HIPPIE: Integrating protein interaction networks with experiment based quality scores. PLoS ONE, 7(2), e31826.PubMedCentral PubMed CrossRef
    Schmiedt, M. L., Blom, T., Kopra, O., Wong, A., von Schantz-Fant, C., Ikonen, E., et al. (2012). Cln5-deficiency in mice leads to microglial activation, defective myelination and changes in lipid metabolism. Neurobiology of Diseases, 46(1), 19–29.CrossRef
    Schon, E. A., & Manfredi, G. (2003). Neuronal degeneration and mitochondrial dysfunction. The Journal of Clinical Investigation, 111(3), 303–312.PubMedCentral PubMed CrossRef
    Scifo, E., Szwajda, A., Debski, J., Uusi-Rauva, K., Kesti, T., Dadlez, M., et al. (2013). Drafting the CLN3 protein interactome in SH-SY5Y human neuroblastoma cells: A label-free quantitative proteomics approach. Journal of Proteome Research, 12(5), 2101–2115.PubMed CrossRef
    Scifo, E., Szwajda, A., Soliymani, R., Pezzini, F., Bianchi, M., Dapkunas, A., et al. (2015a). Quantitative analysis of PPT1 interactome in human neuroblastoma cells. Data in Brief, 4, 207–216.PubMedCentral PubMed CrossRef
    Scifo, E., Szwajda, A., Soliymani, R., Pezzini, F., Bianchi, M., Dapkunas, A., et al. (2015b). Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics, 123, 42–53.PubMed CrossRef
    Simonati, A., Tessa, A., Bernardina, B. D., Biancheri, R., Veneselli, E., Tozzi, G., et al. (2009). Variant late infantile neuronal ceroid lipofuscinosis because of CLN1 mutations. Pediatric Neurology, 40(4), 271–276.PubMed CrossRef
    Stingl, C., van Vilsteren, F. G., Guzel, C., Ten Kate, F. J., Visser, M., Krishnadath, K. K., et al. (2011). Reproducibility of protein identification of selected cell types in Barrett’s esophagus analyzed by combining laser-capture microdissection and mass spectrometry. Journal of Proteome Research, 10(1), 288–298.PubMed CrossRef
    Suopanki, J., Tyynela, J., Baumann, M., & Haltia, M. (1999a). The expression of palmitoyl-protein thioesterase is developmentally regulated in neural tissues but not in nonneural tissues. Molecular Genetics and Metabolism, 66(4), 290–293.PubMed CrossRef
    Suopanki, J., Tyynela, J., Baumann, M., & Haltia, M. (1999b). Palmitoyl-protein thioesterase, an enzyme implicated in neurodegeneration, is localized in neurons and is developmentally regulated in rat brain. Neuroscience Letters, 265(1), 53–56.PubMed CrossRef
    Tardy, C., Sabourdy, F., Garcia, V., Jalanko, A., Therville, N., Levade, T., et al. (2009). Palmitoyl protein thioesterase 1 modulates tumor necrosis factor alpha-induced apoptosis. Biochimica et Biophysica Acta, 1793(7), 1250–1258.PubMed CrossRef
    Taylor, C. M., Marta, C. B., Claycomb, R. J., Han, D. K., Rasband, M. N., Coetzee, T., et al. (2004). Proteomic mapping provides powerful insights into functional myelin biology. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4643–4648.PubMedCentral PubMed CrossRef
    Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., et al. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562–578.PubMedCentral PubMed CrossRef
    Umar, A., Dalebout, J. C., Timmermans, A. M., Foekens, J. A., & Luider, T. M. (2005). Method optimisation for peptide profiling of microdissected breast carcinoma tissue by matrix-assisted laser desorption/ionisation-time of flight and matrix-assisted laser desorption/ionisation-time of flight/time of flight-mass spectrometry. Proteomics, 5(10), 2680–2688.PubMed CrossRef
    van Beveren, N. J., Krab, L. C., Swagemakers, S., Buitendijk, G. H., Boot, E., van der Spek, P., et al. (2012). Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS ONE, 7(3), e33473.PubMedCentral PubMed CrossRef
    van der Knaap, M. S., & Vaap, J. (2005). Magnetic resonance of myelination and myelin disorders (3rd ed.). Berlin: Springer.CrossRef
    van Spronsen, M., & Hoogenraad, C. C. (2010). Synapse pathology in psychiatric and neurologic disease. Current Neurology and Neuroscience Reports, 10(3), 207–214.PubMedCentral PubMed CrossRef
    Vanhanen, S. L., Puranen, J., Autti, T., Raininko, R., Liewendahl, K., Nikkinen, P., et al. (2004). Neuroradiological findings (MRS, MRI, SPECT) in infantile neuronal ceroid-lipofuscinosis (infantile CLN1) at different stages of the disease. Neuropediatrics, 35(1), 27–35.PubMed CrossRef
    Vanrobaeys, F., Van Coster, R., Dhondt, G., Devreese, B., & Van Beeumen, J. (2005). Profiling of myelin proteins by 2D-gel electrophoresis and multidimensional liquid chromatography coupled to MALDI TOF-TOF mass spectrometry. Journal of Proteome Research, 4(6), 2283–2293.PubMed CrossRef
    Vesa, J., Chin, M. H., Oelgeschlager, K., Isosomppi, J., DellAngelica, E. C., Jalanko, A., et al. (2002). Neuronal ceroid lipofuscinoses are connected at molecular level: interaction of CLN5 protein with CLN2 and CLN3. Molecular Biology of the Cell, 13(7), 2410–2420.PubMedCentral PubMed CrossRef
    Vesa, J., Hellsten, E., Verkruyse, L. A., Camp, L. A., Rapola, J., Santavuori, P., et al. (1995). Mutations in the palmitoyl protein thioesterase gene causing infantile neuronal ceroid lipofuscinosis. Nature, 376(6541), 584–587.PubMed CrossRef
    Virmani, T., Gupta, P., Liu, X., Kavalali, E. T., & Hofmann, S. L. (2005). Progressively reduced synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 knockout mice. Neurobiology of Diseases, 20(2), 314–323.CrossRef
    von Schantz, C., Saharinen, J., Kopra, O., Cooper, J. D., Gentile, M., Hovatta, I., et al. (2008). Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases. BMC Genomics, 9, 146.CrossRef
    Wang, P., Ju, W., Wu, D., Wang, L., Yan, M., Zou, J., et al. (2011). A two-dimensional protein fragmentation-proteomic study of neuronal ceroid lipofuscinoses: Identification and characterization of differentially expressed proteins. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879(5–6), 304–316.PubMed CrossRef
    Warburton, S., Southwick, K., Hardman, R. M., Secrest, A. M., Grow, R. K., Xin, H., et al. (2005). Examining the proteins of functional retinal lipofuscin using proteomic analysis as a guide for understanding its origin. Molecular Visions, 11, 1122–1134.
    Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., & Chao, P., et al. (2010). The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38(Web Server issue), W214–W220.
    Wei, H., Zhang, Z., Saha, A., Peng, S., Chandra, G., Quezado, Z., et al. (2011). Disruption of adaptive energy metabolism and elevated ribosomal p-S6K1 levels contribute to INCL pathogenesis: Partial rescue by resveratrol. Human Molecular Genetics, 20(6), 11111121.PubMedCentral PubMed CrossRef
    Wirsching, H. G., Krishnan, S., Florea, A. M., Frei, K., Krayenbuhl, N., Hasenbach, K., et al. (2014). Thymosin beta 4 gene silencing decreases stemness and invasiveness in glioblastoma. Brain, 137(Pt 2), 433–448.PubMed CrossRef
    Wisztorski, M., Croix, D., Macagno, E., Fournier, I., & Salzet, M. (2008). Molecular MALDI imaging: An emerging technology for neuroscience studies. Developmental Neurobiology, 68(6), 845–858.PubMed CrossRef
    Xu, B. J. (2010). Combining laser capture microdissection and proteomics: Methodologies and clinical applications. Proteomics. Clinical Applications, 4(2), 116–123.PubMed CrossRef
    Yang, J., Gu, P., Menges, S., & Klassen, H. (2012). Quantitative changes in gene transcription during induction of differentiation in porcine neural progenitor cells. Molecular Visions, 18, 1484–1504.
    Zhang, Y. Q., Henderson, M. X., Colangelo, C. M., Ginsberg, S. D., Bruce, C., Wu, T., et al. (2012). Identification of CSPalpha clients reveals a role in dynamin 1 regulation. Neuron, 74(1), 136–150.PubMedCentral PubMed CrossRef
    Zhang, Z., Lee, Y. C., Kim, S. J., Choi, M. S., Tsai, P. C., Xu, Y., et al. (2006). Palmitoyl-protein thioesterase-1 deficiency mediates the activation of the unfolded protein response and neuronal apoptosis in INCL. Human Molecular Genetics, 15(2), 337–346.PubMed CrossRef
    Zimmerman, T. A., Monroe, E. B., Tucker, K. R., Rubakhin, S. S., & Sweedler, J. V. (2008). Chapter 13: imaging of cells and tissues with mass spectrometry: Adding chemical information to imaging. Methods in Cell Biology, 89, 361–390.PubMedCentral PubMed CrossRef
    Zuberi, K., Franz, M., Rodriguez, H., Montojo, J., Lopes, C. T., Bader, G. D., et al. (2013). GeneMANIA prediction server 2013 update. Nucleic Acids Research, 41, W115–W122.PubMedCentral PubMed CrossRef
  • 作者单位:Saara Tikka (1) (2)
    Evanthia Monogioudi (2) (8)
    Athanasios Gotsopoulos (3)
    Rabah Soliymani (1)
    Francesco Pezzini (4)
    Enzo Scifo (1) (7) (9)
    Kristiina Uusi-Rauva (2) (6)
    Jaana Tyynelä (1)
    Marc Baumann (1)
    Anu Jalanko (5) (6)
    Alessandro Simonati (4)
    Maciej Lalowski (1) (2)

    1. Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
    2. Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
    8. Joint Research Centre, Directorate D–Institute for Reference Materials and Measurements, Standards for Innovation and Sustainable Development, Geel, Belgium
    3. Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, 02150, Espoo, Finland
    4. Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
    7. Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland
    9. Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
    6. Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
    5. Institute for Molecular Medicine (FIMM), University of Helsinki, 00014, Helsinki, Finland
  • 刊物主题:Neurosciences; Neurology; Internal Medicine;
  • 出版者:Springer US
  • ISSN:1559-1174
文摘
Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease—palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients’ fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington’s disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood encephalopathy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700