Geological control of physical and chemical hydrology in California vernal pools
详细信息    查看全文
  • 作者:Mark C. Rains (1)
    Randy A. Dahlgren (2)
    Graham E. Fogg (2)
    Thomas Harter (2)
    Robert J. Williamson (2)
  • 关键词:dissolved constituents ; geology ; ground water ; nutrients ; soils ; surface water ; turbidity
  • 刊名:Wetlands
  • 出版年:2008
  • 出版时间:June 2008
  • 年:2008
  • 卷:28
  • 期:2
  • 页码:347-362
  • 全文大小:882KB
  • 参考文献:1. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome, Italy.
    2. Allen, R. G., I. A. Walter, R. L. Elliott, T. A. Howell, D. Itenfisu, M. E. Jensen, and R. L. Snyder (eds.). 2005. The ASCE Standardized Reference Evapotranspiration Equation. American Society of Civil Engineers, Washington, DC, USA.
    3. Bagtzoglou, A. C., T. L. Tolley, S. A. Stothoff, and D. R. Turner. 2000. Perched aquifers in arid environments and inferences for recharge rates. p. 401鈥?6. / In A. Dassargues (ed.) Tracers and Modelling in Hydrogeology. IAHS Special Publication No. 262. IAHS Press, Wallingford, UK.
    4. Barbour, M., B. Pavlik, F. Drysdale, and S. Lindstrom. 1993. California鈥檚 Changing Landscapes: Diversity and Conservation of California Vegetation. California Native Plant Society, Sacramento, CA, USA.
    5. Bates, L. A. 1977. Soil Survey of Solano County, California. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC, USA.
    6. Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1998. Standard Methods for the Examination of Water and Wastewater, twentieth edition. American Public Health Association, Washington, DC, USA.
    7. Dahlgren, R. A. 1994. Soil acidification and nitrogen saturation from weathering of ammonium-bearing rock. Nature 368: 838鈥?1. CrossRef
    8. Davisson, M. L., T. S. Presser, and R. E. Criss. 1994. Geochemistry of tectonically expelled fluids from the northern Coast ranges, Rumsey Hills, California, USA. Geochimica et Cosmochimica Acta 58: 1687鈥?9. CrossRef
    9. Dickinson, W. R. and E. I. Rich. 1972. Petrologic intervals and petrofacies in the Great Valley Sequence, Sacramento Valley, California. Geologic Society of America Bulletin 83: 3007鈥?4. CrossRef
    10. Doorenbos, J. and W. O. Pruitt. 1977. Guidelines for prediction of crop water requirements. FAO Irrigation and Drainage Paper No. 24. Food and Agriculture Organization of the United Nations, Rome, Italy.
    11. Driese, S. G., L. D. McKay, and C. P. Penfield. 2001. Lithologic and pedogenic influences on porosity distribution and groundwater flow in fractured sedimentary saprolite: a new application of environmental sedimentology Journal of Sedimentary Research, 71: 843鈥?7. CrossRef
    12. Freeze, R. A. and J. A. Cherry. 1979. Groundwater. Prentice-Hall, Upper Saddle River, NJ, USA.
    13. Gray, D. H. 1974. Reinforcement and stabilization of soil by vegetation. Journal of Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers 100: 695鈥?9.
    14. Gremillion, P. and M. Wanielista. 2000. Effects of evaporative enrichment on the stable isotope hydrology of a central Florida (USA) river. Hydrological Processes 14: 1465鈥?4. CrossRef
    15. Gunn, R. H. and D. P. Richardson. 1979. The nature and possible origins of soluble salts in deeply weathered landscapes of south eastern Australia. Australian Journal of Soil Research 17: 197鈥?15.
    16. Haag, K. H., T. M. Lee, and D. C. Herndon. 2005. Bathymetry and vegetation in isolated marsh and cypress wetlands in the northern Tampa Bay area, 2000鈥?004. U.S. Geological Survey Scientific Investigations Report 2005-5109. U.S. Government Printing Office, Washington, DC, USA.
    17. Hanes, T. and L. Stromberg. 1998. Hydrology of vernal pools on non-volcanic soils in the Sacramento Valley. p. 38鈥?9. / In C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren, Jr., and R. Ornduf (eds.) Ecology, Conservation, and Management of Vernal Pool Ecosystems. California Native Plant Society, Sacramento, CA, USA.
    18. Hanschke, T. and A. J. Baird. 2001. Time-lag errors associated with the use of simple standpipe piezometers in wetland soils. Wetlands 21: 412鈥?1. CrossRef
    19. Harden, J. W. 1987. Soils developed in granitic alluvium near Merced, California. U.S. Geological Survey Bulletin 1590-A. U.S. Government Printing Office, Washington, DC, USA.
    20. Hobson, W. A. and R. A. Dahlgren. 1998. Soil forming processes in vernal pools of northern California, Chico area. p. 24鈥?7. / In C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren, Jr., and R. Ornduf (eds.) Ecology, Conservation, and Management of Vernal Pool Ecosystems. California Native Plant Society, Sacramento, CA, USA.
    21. Holland, R. F. 1978. Geographic and edaphic distribution of vernal pools in the Great Central Valley, California. California Native Plant Society Special Publication No 4. California Native Plant Society, Berkeley, CA, USA.
    22. Holland, R. F. 1998. Great Valley vernal pool distribution, photorevised 1996. p. 71鈥?5. / In C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren, Jr., and R. Ornduf (eds.) Ecology, Conservation, and Management of Vernal Pool Ecosystems. California Native Plant Society, Sacramento, CA, USA.
    23. Holland, R. F. and S. Jain. 1988. Vernal pools. p. 515鈥?3. / In M. G. Barbour and J. Major (eds.) Terrestrial Vegetation of California. California Native Plant Society, Sacramento, CA, USA.
    24. Holloway, J. M., R. A. Dahlgren, B. Hansen, and W. H. Casey. 1998. Contribution of bedrock nitrogen to high nitrate concentrations in streamwater. Nature 395: 785鈥?8. CrossRef
    25. Hvorslev, M. J. 1951. Time lag and soil permeability in groundwater observations. Waterways Experimental Station Bulletin 36. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA.
    26. Jennings, C. W. 1977. Geologic map of California. Division of Mines and Geology Geologic Data Map No. 2. California Department of Conservation, Division of Mines and Geology, Sacramento, CA, USA.
    27. Jennings, C. W. 1985. An explanatory text to accompany the 1:750,000 scale fault and geologic maps of California. Division of Mines and Geology Bulletin 201. California Department of Conservation, Division of Mines and Geology, Sacramento, CA, USA.
    28. Jokerst, J. D. 1990. Floristic analysis of volcanic mudflow vernal pools. p. 1鈥?6. / In D. H. Ikeda and R. A. Schlising (eds.) Vernal Pool Plants: Their Habitat and Biology. Studies from the Herbarium Number 8. California State University, Chico, CA, USA.
    29. Keeley, J. E. and P. H. Zedler. 1998. Characterization and global distribution of vernal pools. p. 1鈥?4. / In C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren, Jr., and R. Ornduf (eds.) Ecology, Conservation, and Management of Vernal Pool Ecosystems. California Native Plant Society, Sacramento, CA, USA.
    30. Klotz, R. L. 1988. Sediment control of soluble reactive phosphorus in Hoxie George Creek, New York. Canadian Journal of Fisheries and Aquatic Sciences 45: 2026鈥?4. CrossRef
    31. Lacey, G. C. and R. B. Grayson. 1998. Relating baseflow to catchment properties in south-eastern Australia. Journal of Hydrology 204: 231鈥?0. CrossRef
    32. Lee, T. M. and K. H. Haag. 2006. Strength in numbers: describing the flooded area of isolated wetlands. U.S. Geological Survey Fact Sheet 2006-3118. U.S. Government Printing Office, Washington, DC, USA.
    33. Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fischer, and R. S. Pierce. 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook Watershed-Ecosystem. Ecological Monographs 40: 23鈥?7. CrossRef
    34. Maybeck, M. 1993. C, N, P and S in rivers: from sources to global inputs. p. 163鈥?3. / In R. Wollast, F. T. MacKenzie, and L. Chou (eds.) Interactions of C, N, P and S in Biogeochemical Cycles and Global Change. Springer, New York, NY, USA.
    35. Meyer, J. 1979. The role of sediments and bryophytes in phosphorus dynamics in a headwater stream ecosystem. Limnology and Oceanography 24: 365鈥?5.
    36. Miller, W. P. and M. K. Baharuddin. 1986. Relationship of soil dispersibility to infiltration and erosion of southeastern soils. Soil Science 142: 235鈥?0. CrossRef
    37. Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. Van Nostrand Reinhold, New York, NY, USA.
    38. Munn, N. L. and J. L. Meyer. 1990. Habitat-specific solute retention in two small streams: an intersite comparison. Ecology 71: 2069鈥?2. CrossRef
    39. Nikiforoff, C. C. 1941. Hardpan and micro relief in certain soil complexes of California. U.S. Department of Agriculture Technical Bulletin No. 745. U.S. Government Printing Office, Washington, DC, USA.
    40. Peters, E. K. 1993. D-18O enriched waters of the Coast Range Mountains, northern California: connate and ore-forming fluids. Geochimica et Cosmochimica Acta 57: 1093鈥?104. CrossRef
    41. Piper, A. M. 1944. A graphic procedure in the geochemical interpretation of water analyses. Transactions American Geophysical Union 25: 914鈥?3.
    42. Prosser, I. P., W. E. Dietrich, and J. Stevenson. 1995. Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology 13: 71鈥?6. CrossRef
    43. Quirk, J. P. and R. K. Schofield. 1955. The effects of electrolyte concentration on soil permeability. Journal of Soil Science 6: 163鈥?8. CrossRef
    44. Rains, M. C., G. E. Fogg, T. Harter, R. A. Dahlgren, and R. J. Williamson. 2006. The role of perched aquifers in hydrological connectivity and biogeochemical processes in vernal pool landscapes, Central Valley, California. Hydrological Processes 20: 1157鈥?5. CrossRef
    45. Rhoades, J. D. 1982. Soluble salts. p. 167鈥?9. / In A. L. Page (ed.) Methods of Soil Analysis, Part 2, second edition. American Society of Agronomy, Madison, WI, USA.
    46. Riefner, R. E. and D. R. Pryor. 1996. New locations and interpretations of vernal pools in Southern California. Phytologia 80: 296鈥?27.
    47. Sawyer, J. O. and T. Keeler-Wolf. 1995. A Manual of California Vegetation. California Native Plant Society, Sacramento, CA, USA.
    48. Shainberg, I., D. Warrington, and J. M. Laflen. 1992. Soil dispersibility, rain properties, and slope interaction in rill formation and erosion. Soil Science Society of America Journal 56: 278鈥?3.
    49. Shlemon, R. J. 1972. The lower American River area, California: a model of Pleistocene landscape evolution. Association of Pacific Coast Geographers Yearbook 34: 61鈥?6.
    50. Singer, M. J. and D. N. Munns. 1996. Soils: An Introduction, third edition. Prentice-Hall, Upper Saddle River, NJ, USA.
    51. Smeck, N. E. 1985. Phosphorus dynamics in soils and landscapes. Geoderma 36: 185鈥?9. CrossRef
    52. Smith, D. W. and W. L. Verrill. 1998. Vernal pool-soil-landform relationships in the Central Valley, California. p. 15鈥?3. / In C. W. Witham, E. T. Bauder, D. Belk, W. R. Ferren, Jr., and R. Ornduf (eds.) Ecology, Conservation, and Management of Vernal Pool Ecosystems. California Native Plant Society, Sacramento, CA, USA.
    53. Soil Survey Staff. 2006. National Soil Survey Characterization Data, Soil Survey Laboratory, National Soil Survey Center. U.S. Department of Agriculture, Natural Resource Conservation Service, Lincoln, Nebraska. Accessed 25 August 2006.
    54. Stebbins, G. L. 1976. Ecological islands and vernal pools of California. p. 1鈥?. / In S. Jain (ed.) Vernal Pools: Their Ecology and Conservation. Institute of Ecology Publication 9. University of California, Davis, CA, USA.
    55. Tiner, R. W., H. C. Bergquist, G. P. DeAlessio, and M. J. Starr. 2002. Geographically isolated wetlands: a preliminary assessment of their characteristics and status in selected areas of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Northeast Region, Hadley, MA, USA.
    56. Tugel, A. J. 1993. Soil Survey of Sacramento County, California. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC, USA.
    57. U.S. Fish and Wildlife Service. 2004. Draft recovery plan for vernal pool ecosystems of California and southern Oregon. U.S. Department of the Interior, Fish and Wildlife Service, Northwest Region, Portland, OR, USA.
    58. Ventura, F., D. Spano, P. Duce, and R. L. Snyder. 1999. An evaluation of common evapotranspiration equations. Irrigation Science 18: 163鈥?0. CrossRef
    59. Weitkamp, W. A., R. C. Graham, M. A. Anderson, and C. Amrhein. 1996. Pedogenesis of a vernal pool Entisol-Alfisol-Vertisol catena in southern California. Soil Science Society of America Journal 60: 316鈥?3. CrossRef
    60. White, D. E., I. Barnes, and J. R. O鈥橬eil. 1973. Thermal and mineral waters of nonmeteoric origin, California Coast Ranges. Geological Society of America Bulletin 84: 547鈥?0. CrossRef
    61. Winter, T. C. 2001. The concept of hydrologic landscapes. Journal of the American Water Resources Association 37: 335鈥?9. CrossRef
    62. Zar, J. H. 1984. Biostatistical Analysis, second edition. Prentice-Hall, Upper Saddle River, NJ, USA.
  • 作者单位:Mark C. Rains (1)
    Randy A. Dahlgren (2)
    Graham E. Fogg (2)
    Thomas Harter (2)
    Robert J. Williamson (2)

    1. Department of Geology, University of South Florida, 33620, Tampa, Florida, USA
    2. Department of Land, Air, and Water Resources, University of California, 95616, Davis, California, USA
  • ISSN:1943-6246
文摘
Vernal pools are small depressional wetlands found in seasonal climates throughout the world. In California, they are among the few ecosystems still dominated by native flora and are critical habitat for numerous endemic and rare species. In this study, we show that geology is a dominant control on the physical and chemical hydrology of contrasting vernal pools on clay-rich and hardpan soils, the two most common types of vernal pools in the Central Valley, California. The vernal pools on clay-rich soils formed on alluvium derived primarily from sedimentary and metasedimentary rocks of marine origin and deposited in relatively low-gradient environments. The clay-rich soils are fine grained and moderately to strongly saline and sodic. The vernal pools on clay-rich soils are perched surface-water systems in which surface waters are relatively saline, sodic, and turbid and in which primary productivity may be nitrogen and light limited. The vernal pools on hardpan soils formed on alluvium derived primarily from coarse-grained igneous rocks and deposited in relatively high-gradient environments. Surface soils are coarse grained and underlain by a clay-rich argillic horizon and a silica- and iron-cemented duripan. The vernal pools on hardpan soils are surface-water and perched ground-water systems in which surface waters are relatively fresh and non-turbid and in which primary productivity may be phosphorus limited. While surficially similar, these vernal pools differ in their physical and chemical hydrology, and therefore should be treated differently in resource conservation, restoration, and management efforts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700