Cerebrospinal fluid is an efficient route for establishing brain infection with feline immunodeficiency virus and transfering infectious virus to the periphery
详细信息    查看全文
  • 作者:Pinghuang Liu (1)
    Lola C. Hudson (1)
    Mary B. Tompkins (1)
    Thomas W. Vahlenkamp (1) (2)
    Brenda Colby (1)
    Cyndi Rundle (3)
    Rick B. Meeker (3)
  • 关键词:dementia ; HIV ; macrophages ; T cells ; viremia
  • 刊名:Journal of NeuroVirology
  • 出版年:2006
  • 出版时间:July 2006
  • 年:2006
  • 卷:12
  • 期:4
  • 页码:294-306
  • 全文大小:402KB
  • 参考文献:1. Antinori A, Cingolani A, Giancola ML, Forbici F, De Luca A, Perno CF (2003). Clinical implications of HIV-1 drug resistance in the neurological compartment. / Scand J Infect Dis Suppl 35(Suppl 106): 41-4. dx.doi.org/10.1080/03008870310009650">CrossRef
    2. Barber SA, Herbst DS, Bullock BT, Gama L, Clements JE (2004). Innate immune responses and control of acute simian immunodeficiency virus replication in the central nervous system. / J NeuroVirol 10(Suppl 1): 15-0.
    3. Blankson JN, Persaud D, Siliciano RF (2002). The challenge of viral reservoirs in HIV-1 infection. / Annu Rev Med 53: 557-93. dx.doi.org/10.1146/annurev.med.53.082901.104024">CrossRef
    4. Boche D, Gray F, Chakrabarti L, Hurtrel M, Montagnier L, Hurtrel B (1995). Low susceptibility of resident microglia to simian immunodeficiency virus replication during the early stages of infection. / Neuropathol Appl Neurobiol 21: 535-39. dx.doi.org/10.1111/j.1365-2990.1995.tb01100.x">CrossRef
    5. Boche D, Hurtrel M, Gray F, Claessens-Maire MA, Ganiere JP, Montagnier, Hurtrel B (1996). Virus load and neuropathology in the FIV model. / J NeuroVirol 2: 377-87. dx.doi.org/10.3109/13550289609146903">CrossRef
    6. Boche D, Khatissian E, Gray F, Falanga P, Montagnier L, Hurtrel B (1999). Viral load and neuropathology in the SIV model. / J NeuroVirol 5: 232-40. dx.doi.org/10.3109/13550289909015809">CrossRef
    7. Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1997). Lymphatic drainage of the CNS: effects of lymphatic diversion/ligation on CSF protein transport to plasma. / Am J Physiol 272: R1613-R1619.
    8. Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998). Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. / Am J Physiol 274: R88-R96.
    9. Boulton M, Young A, Hay J, Armstrong D, Flessner M, Schwartz M, Johnston M (1996). Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I-albumin clearance. / Neuropathol Appl Neurobiol 22: 325-33. dx.doi.org/10.1111/j.1365-2990.1996.tb01111.x">CrossRef
    10. Bragg D, Childers T, Tompkins M, Tompkins W, Meeker R (2002a). Infection of the choroid plexus by feline immunodeficiency virus. / J NeuroVirol 8: 211-24. dx.doi.org/10.1080/13550280290049688">CrossRef
    11. Bragg D, Hudson L, Liang Y, Tompkins M, Fernandes A, Meeker R (2002b). Choroid plexus macrophages proliferate and release toxic factors in response to feline immunodeficiency virus. / J NeuroVirol 8: 225-39. dx.doi.org/10.1080/13550280290049679">CrossRef
    12. Brew BJ, Pemberton L, Cunningham P, Law MG (1997). Levels of human immunodeficiency virus type 1 RNA in cerebrospinal fluid correlate with AIDS dementia stage. / Infect Dis 175: 963-66. dx.doi.org/10.1086/514001">CrossRef
    13. Budka H (1991a). Neuropathology of human immunodeficiency virus infection. / Brain Pathol 1: 163-75. dx.doi.org/10.1111/j.1750-3639.1991.tb00656.x">CrossRef
    14. Budka H (1991b). The definition of HIV-specific neuropathology. / Acta Pathol Jpn 41: 182-91.
    15. Chen H, Wood C, Petito CK (2000). Comparisons of HIV-1 viral sequences in brain, choroid plexus and spleen: potential role of choroid plexus in the pathogenesis of HIV encephalitis. / J NeuroVirol 6: 498-06. dx.doi.org/10.3109/13550280009091950">CrossRef
    16. Cinque P, Vago L, Ceresa D, Mainini F, Terreni MR, Vagani A, Torri W, Bossolasco S, Lazzarin A (1998). Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. / AIDS 12: 389-94. dx.doi.org/10.1097/00002030-199804000-00007">CrossRef
    17. Clements JE, Babas T, Mankowski JL, Suryanarayana K, Piatak M Jr, Tarwater PM, Lifson JD, Zink MC (2002). The central nervous system as a reservoir for simian immunodeficiency virus (SIV): steady-state levels of SIV DNA in brain from acute through asymptomatic infection. / J Infect Dis 186: 905-13. dx.doi.org/10.1086/343768">CrossRef
    18. Clements JE, Li Ming, Gama L, Bullock Brandon, Carruth LM, Mankowski JL, Zink MC (2005). The central nervous system is a viral reservoir in simian immunodeficiency virus-infected macaques on combined antiretroviral therapy: a model for human immunodeficiency virus patients on highly active antiretroviral therapy. / J NeuroVirol 11(2): 180-89.
    19. Cserr HF, Harling-Berg CJ, Knopf PM (1992). Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. / Brain Pathol 2: 269-76. dx.doi.org/10.1111/j.1750-3639.1992.tb00703.x">CrossRef
    20. Cserr HF, Knopf PM (1997). Cervical lymphatics, the blood-brain barrier, and immunoreactivity of the brain. In Immunology of the Nervous System. Keane RW, Hickey WF (eds). Oxford University Press, pp 134-52.
    21. Cunningham PH, Smith DG, Satchell C, Cooper DA, Brew B (2000). Evidence for independent development of resistance to HIV-1 reverse transcriptase inhibitors in the cerebrospinal fluid. / AIDS 14: 1949-954. dx.doi.org/10.1097/00002030-200009080-00010">CrossRef
    22. Davidson MG, Rottman JB, English RV, Lappin MR, Tompkins MB (1993). Feline immunodeficiency virus predisposes cats to acute generalized toxoplasmosis. / Am J Pathol 143: 1486-497.
    23. Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, Young SA, Mills RG, Wachsman W, Wiley CA (1992). Early viral brain invasion in iatrogenic human immunodeficiency virus infection. / Neurology 42: 1736-739.
    24. Di Stefano M, Monno L, Ramon FJ, Angarano G (1997). In vivo evidence of HIV-1 productive infection in cerebrospinal fluid of patients with HIV-1 encephalopathy. / AIDS 11: 698-99.
    25. Di Stefano M, Wilt S, Gray F, Dubois-Dalcq M, Chiodi F (1996). HIV type 1 V3 sequences and the development of dementia during AIDS. / AIDS Res Hum Retroviruses 12: 471-76. dx.doi.org/10.1089/aid.1996.12.471">CrossRef
    26. Dow S, Poss M, Hoover E (1990). Feline immunodeficiency virus: a neurotropic lentivirus. / J AIDS 3: 658-68.
    27. English RV, Johnson CM, Gebhard DH, Tompkins MB (1993). In vivo lymphocyte tropism of feline immunodeficiency virus. J / Virol 67: 5175-186.
    28. Falangola MF, Hanly A, Galvao-Castro B, Petito CK (1995). HIV infection of human choroid plexus: a possible mechanism of viral entry into the CNS. / J Neuropathol Exp Neurol 54: 497-03. dx.doi.org/10.1097/00005072-199507000-00003">CrossRef
    29. Gray F, Adle-Biassette H, Chretien F, Lorin dlG, Force G, Keohane C (2001). Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. / Clin Neuropathol 20: 146-55.
    30. Gray F, Hurtrel M, Hurtrel B (1996). Early central nervous system changes in human immunodeficiency virus (HIV)-infection. / Neuropathol Appl Neurobiol 19: 3-. dx.doi.org/10.1111/j.1365-2990.1993.tb00399.x">CrossRef
    31. Harling-Berg CJ, Hallett JJ, Park JT, Knopf PM (2002). Hierarchy of immune responses to antigen in the normal brain. / Curr Top Microbiol Immunol 265: 1-2.
    32. Harling-Berg CJ, Park TJ, Knopf PM (1999). Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. / J Neuroimmunol 101: 111-27. dx.doi.org/10.1016/S0165-5728(99)00130-7">CrossRef
    33. Hein A, Martin JP, Koehren F, Bingen A, Dorries R (2000). In vivo infection of ramified microglia from adult cat central nervous system by feline immunodeficiency virus. / Virology 268: 420-29. dx.doi.org/10.1006/viro.1999.0152">CrossRef
    34. Henriksen SJ, Prospero-Garcia O, Phillips TR, Fox HS, Bloom FE, Elder JH (1995). Feline immunodeficiency virus as a model for study of lentivirus infection of the central nervous system. [review]. / Curr Top Microbio Immunol 202: 167-86.
    35. Hurtrel B, Chakrabarti L, Hurtrel M, Maire MA, Dormont D, Montagnier L (1991). Early SIV encephalopathy. / J Med Primatol 20: 159-66.
    36. Hurtrel B, Chakrabarti L, Hurtrel M, Montagnier L (1993). Target cells during early SIV encephalopathy. / Res Virol 144: 41-6. dx.doi.org/10.1016/S0923-2516(06)80010-5">CrossRef
    37. Hurtrel M, Ganiere J, Guelifi J, Chakrabarti L, Maire M, Gray F, Montagnier L, Hurtrel B (1992). Comparison of early and late feline immunodeficiency virus encephalopathies. / AIDS 6: 399-06. dx.doi.org/10.1097/00002030-199204000-00007">CrossRef
    38. Kida S, Pantazis A, Weller RO (1993). CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. / Neuropathol Appl Neurobiol 19: 480-88. dx.doi.org/10.1111/j.1365-2990.1993.tb00476.x">CrossRef
    39. Leutenegger CM, Klein D, Hofmann-Lehmann R, Mislin C, Hummel U, Boni J, Boretti F, Guenzburg WH, Lutz H (1999). Rapid feline immunodeficiency virus provirus quantitation by polymerase chain reaction using the TaqMan fluorogenic real-time detection system. / J Virol Methods 78: 105-16. dx.doi.org/10.1016/S0166-0934(98)00166-9">CrossRef
    40. Liu Y, Tang XP, McArthur JC, Scott J, Gartner S (2000). Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. / J Neurovirol 6(Suppl 1): S70-S81.
    41. Lossinsky AS, Shivers RR (2004). Structural pathways for macromolecular and cellular transport across the blood-brain barrier during inflammatory conditions. / Histol Histopathol 19: 535-64.
    42. Mann JD, Butler AB, Johnson RN, Bass NH (1979). Clearance of macromolecular and particulate substances from the cerebrospinal fluid system of the rat. / J Neurosurg 50: 343-48. dx.doi.org/10.3171/jns.1979.50.3.0343">CrossRef
    43. Martin C, Albert J, Hansson P, Pehrsson P, Link H, Sonnerborg A (1998). Cerebrospinal fluid mononuclear cell counts influence CSF HIV-1 RNA levels. / J Acquir Immune Defic Syndr Hum Retrovirol 17: 214-19.
    44. Meeker RB, Thiede BA, Hall C, English R, Tompkins M (1997). Cortical cell loss in asymptomatic cats experimentally infected with feline immunodeficiency virus. / AIDS Res Hum Retroviruses 13: 1131-140. dx.doi.org/10.1089/aid.1997.13.1131">CrossRef
    45. Petito CK (2004). Human immunodeficiency virus type 1 compartmentalization in the central nervous system. / J NeuroVirol 10(Suppl 1): 21-4.
    46. Petito CK, Chen H, Mastri AR, Torres-Munoz J, Roberts B, Wood C (1999). HIV infection of choroid plexus in AIDS and asymptomatic HIV-infected patients suggests that the choroid plexus may be a reservoir of productive infection. / J Neurovirol 5: 670-77. dx.doi.org/10.3109/13550289909021295">CrossRef
    47. Phillips T, Prospero-Garcia O, Puaoi D, Lerner D, Fox H, Olmsted R, Bloom F, Heriksen S, Elder J (1994). Neurological abnormalities associated with feline immunodeficiency virus infection. / J Gen Virol 75: 979-87. dx.doi.org/10.1099/0022-1317-75-5-979">CrossRef
    48. Power C, Buist R, Johnston JB, Del Bigio MR, Ni W, Dawood MR, Peeling J (1998). Neurovirulence in feline immunodeficiency virus-infected neonatal cats is viral strain specific and dependent on systemic immune suppression. / J Virol 72: 9109-115.
    49. Power C, Moench T, Peeling J, Kong P-A, Langelier T (1997). Feline immunodeficiency virus causes increased glutamate levels and neuronal loss in brain. / Neuroscience 77: 1175-185. dx.doi.org/10.1016/S0306-4522(96)00531-3">CrossRef
    50. Redzic ZB, Segal MB (2004). The structure of the choroid plexus and the physiology of the choroid plexus epithelium. / Adv Drug Deliv Rev 56: 1695-716. dx.doi.org/10.1016/j.addr.2004.07.005">CrossRef
    51. Ryan G, Grimes T, Brankin B, Mabruk MJ, Hosie MJ, Jarrett O, Callanan JJ (2005). Neuropathology associated with feline immunodeficiency virus infection highlights prominent lymphocyte trafficking through both the blood-brain and blood-choroid plexus barriers. J / NeuroVirol 11: 337-45. dx.doi.org/10.1080/13550280500186445">CrossRef
    52. Ryan G, Klein D, Knapp E, Hosie MJ, Grimes T, Mabruk MJ, Jarrett O, Callanan JJ (2003). Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection. / J Virol 77: 7477-485. dx.doi.org/10.1128/JVI.77.13.7477-7485.2003">CrossRef
    53. Segal MB (2000). The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. / Cell Mol Neurobiol 20: 183-96. dx.doi.org/10.1023/A:1007045605751">CrossRef
    54. Shapshak P, Segal DM, Crandall KA, Fujimura RK, Zhang BT, Xin KQ, Okuda K, Petito CK, Eisdorfer C, Goodkin K (1999). Independent evolution of HIV type 1 in different brain regions. / AIDS Res Hum Retroviruses 15: 811-20. dx.doi.org/10.1089/088922299310719">CrossRef
    55. Sinclair E, Gray F, Ciardi A, Scaravilli F (1994). Immunohistochemical changes and PCR detection of HIV provirus DNA in brains of asymptomatic HIV-positive patients. / J Neuropathol Exp Neurol 53: 43-0. dx.doi.org/10.1097/00005072-199401000-00006">CrossRef
    56. Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Gunthard HF, Good B, Smith DM, Wolinsky SM, Furtado M, Marquie-Beck J, Durelle J, Grant I, Richman DD, Marcotte T, McCutchan JA, Ellis RJ, Wong JK (2005). Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. / J Virol 79: 1772-788. dx.doi.org/10.1128/JVI.79.3.1772-1788.2005">CrossRef
    57. Williams KC, Corey S, Westmoreland SV, Pauley D, Knight H, deBakker C, Alvarez X, Lackner AA (2001). Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. / J Exp Med 193: 905-15. dx.doi.org/10.1084/jem.193.8.905">CrossRef
    58. Williams KC, Hickey WF (2002). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. / Annu Rev Neurosci 25: 537-62. dx.doi.org/10.1146/annurev.neuro.25.112701.142822">CrossRef
    59. Zink MC, Suryanarayana K, Mankowski JL, Shen A, Piatak M, Jr., Spelman JP, Carter DL, Adams RJ, Lifson JD, Clements JE (1999). High viral load in the cerebrospinal fluid and brain correlates with severity of simian immunodeficiency virus encephalitis. / J Virol 73: 10480-0488.
  • 作者单位:Pinghuang Liu (1)
    Lola C. Hudson (1)
    Mary B. Tompkins (1)
    Thomas W. Vahlenkamp (1) (2)
    Brenda Colby (1)
    Cyndi Rundle (3)
    Rick B. Meeker (3)

    1. Immunology Program, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
    2. Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
    3. Department of Neurology and Neurobiology Curriculum, University of North Carolina, 6109 Neuroscience Research Building, 103 Mason Farm Road, CB# 7025, 27599, Chapel Hill, NC, USA
  • ISSN:1538-2443
文摘
Like human immunodeficiency virus (HIV), feline immunodeficiency virus (FIV) invades and infects the central nervous system (CNS) soon after peripheral infection. The appearance of viral RNA is particularly prominent in the cerebrospinal fluid (CSF), suggesting an efficient route of virus transfer across the blood-CSF barrier. This raises the concern whether this route can establish a stable viral reservoir and also be a source of virus capable of reseeding peripheral systems. To examine this possibility, 200 μl of cell-free NCSU1 FIV or FIV-infected choroid plexus macrophages (ChP-Mac) was directly injected into the right lateral ventricle of the brain. Negative controls were sham inoculated with uninfected ChP-Mac or virus-free culture supernatant and positive controls were infected systemically by intraperitoneal (i.p.) injection. Intracerebroventricular (i.c.v.) inoculation with cell-free FIV resulted in high levels of plasma FIV RNA detected as early as 1 to 2 weeks post inoculation in all cats. In each case, the plasma viremia preceded the detection of CSF viral RNA. Compared to i.p. cats, i.c.v. cats had 32-fold higher CSF viral loads, 8-fold higher ratios of CSF to plasma viral load, and a 23-fold greater content of FIV proviral DNA in the brain. No FIV RNA was detected in plasma or CSF from the cats inoculated with FIV-infected ChP-Mac but an acute inflammatory response and a slight suppression of the CD4+:CD8+ ratio were observed. These results indicate that free FIV circulating in the CSF promotes infection of the CNS and provides a highly efficient pathway for the transfer of infectious virus to the periphery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700