Surface antigen profiles of leukocytes and melanoma cells in lymph node metastases are associated with survival in AJCC stage III melanoma patients
详细信息    查看全文
  • 作者:Kimberley L. Kaufman (1)
    Swetlana Mactier (1)
    Nicola J. Armstrong (2) (3)
    Duthika Mallawaaratchy (1)
    Scott N. Byrne (4) (5)
    Lauren E. Haydu (6) (7)
    Valerie Jakrot (6)
    John F. Thompson (6)
    Graham J. Mann (6) (8)
    Richard A. Scolyer (10) (6) (9)
    Richard I. Christopherson (1)
  • 关键词:Antibody microarray ; Metastatic melanoma ; CD antigen ; Survival ; Prognosis
  • 刊名:Clinical & Experimental Metastasis
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:31
  • 期:4
  • 页码:407-421
  • 全文大小:1,353 KB
  • 参考文献:1. Thompson JF, Scolyer RA, Kefford RF (2005) Cutaneous melanoma. Lancet 365(9460):687-01
    2. Godar DE (2011) Worldwide increasing incidences of cutaneous malignant melanoma. J Skin Cancer 2011:858425
    3. Reed KB et al (2012) Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. Mayo Clin Proc 87(4):328-34
    4. Bedrosian I et al (2000) Incidence of sentinel node metastasis in patients with thin primary melanoma (<?or?=?1?mm) with vertical growth phase. Ann Surg Oncol 7(4):262-67
    5. Balch CM et al (2001) Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol 19(16):3622-634
    6. Gould Rothberg BE, Bracken MB, Rimm DL (2009) Tissue biomarkers for prognosis in cutaneous melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 101(7):452-74
    7. Gould Rothberg BE, Rimm DL (2010) Biomarkers: the useful and the not so useful—an assessment of molecular prognostic markers for cutaneous melanoma. J Invest Dermatol 130(8):1971-987
    8. Bilalovic N et al (2004) CD10 protein expression in tumor and stromal cells of malignant melanoma is associated with tumor progression. Mod Pathol 17(10):1251-258
    9. Cruz J et al (2003) Expression of c-met tyrosine kinase receptor is biologically and prognostically relevant for primary cutaneous malignant melanomas. Oncology 65(1):72-2
    10. Dietrich A et al (1997) High CD44 surface expression on primary tumours of malignant melanoma correlates with increased metastatic risk and reduced survival. Eur J Cancer 33(6):926-30
    11. Fogel M et al (2003) L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett 189(2):237-47
    12. Fujii H et al (1995) Human melanoma invasion and metastasis enhancement by high expression of aminopeptidase N/CD13. Clin Exp Metastasis 13(5):337-44
    13. Kanekura T, Chen X, Kanzaki T (2002) Basigin (CD147) is expressed on melanoma cells and induces tumor cell invasion by stimulating production of matrix metalloproteinases by fibroblasts. Int J Cancer 99(4):520-28
    14. Kanitakis J, Narvaez D, Claudy A (2002) Differential expression of the CD10 antigen (neutral endopeptidase) in primary versus metastatic malignant melanomas of the skin. Melanoma Res 12(3):241-44
    15. Meier F et al (2006) The adhesion molecule L1 (CD171) promotes melanoma progression. Int J Cancer 119(3):549-55
    16. Reschke M et al (2008) HER3 is a determinant for poor prognosis in melanoma. Clin Cancer Res 14(16):5188-197
    17. Sarff M et al (2008) OX40 (CD134) expression in sentinel lymph nodes correlates with prognostic features of primary melanomas. Am J Surg 195(5):621-25 discussion 625
    18. Scala S et al (2005) Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 11(5):1835-841
    19. van den Oord JJ et al (1996) CD40 is a prognostic marker in primary cutaneous malignant melanoma. Am J Pathol 149(6):1953-961
    20. Wang H et al (2012) NT5E (CD73) is epigenetically regulated in malignant melanoma and associated with metastatic site specificity. Br J Cancer 106(8):1446-452
    21. Belov L et al (2001) Immunophenotyping of leukemias using a cluster of differentiation antibody microarray. Cancer Res 61(11):4483-489
    22. Belov L et al (2006) Analysis of human leukaemias and lymphomas using extensive immunophenotypes from an antibody microarray. Br J Haematol 135(2):184-97
    23. Belov L et al (2003) Identification of repertoires of surface antigens on leukemias using an antibody microarray. Proteomics 3(11):2147-154
    24. Barber N et al (2009) Profiling CD antigens on leukaemias with an antibody microarray. FEBS Lett 583(11):1785-791
    25. Kaufman KL et al (2010) An extended antibody microarray for surface profiling metastatic melanoma. J Immunol Methods 358(1-):23-4
    26. Lal S et al (2004) Increases in leukocyte cluster of differentiation antigen expression during cardiopulmonary bypass in patients undergoing heart transplantation. Proteomics 4(7):1918-926
    27. White SL et al (2005) Immunophenotypic changes induced on human HL60 leukaemia cells by 1alpha,25-dihydroxyvitamin D3 and 12-O-tetradecanoyl phorbol-13-acetate. Leuk Res 29(10):1141-151
    28. Woolfson A et al (2005) Conservation of unique cell-surface CD antigen mosaics in HIV-1-infected individuals. Blood 106(3):1003-007
    29. Wu JQ et al (2007) Antibody microarray analysis of cell surface antigens on CD4+ and CD8+ T cells from HIV+ individuals correlates with disease stages. Retrovirology 4:83
    30. Mann GJ et al (2013) BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. J Invest Dermatol 133(2):509-17
    31. Murali R et al (2012) Number of primary melanomas is an independent predictor of survival in patients with metastatic melanoma. Cancer 118(18):4519-529
    32. Pepper MS (2001) Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7(3):462-68
    33. Pasquali S et al (2013) Lymphatic biomarkers in primary melanomas as predictors of regional lymph node metastasis and patient outcomes. Pigment Cell Melanoma Res 26(3):326-37
    34. Shayan R et al (2012) Lymphatic vessel density in primary melanomas predicts sentinel lymph node status and risk of metastasis. Histopathology 61(4):702-10
    35. Harrell MI, Iritani BM, Ruddell A (2007) Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am J Pathol 170(2):774-86
    36. Ruddell A et al (2011) B lymphocytes promote lymphogenous metastasis of lymphoma and melanoma. Neoplasia 13(8):748-57
    37. Ruddell A et al (2008) p19/Arf and p53 suppress sentinel lymph node lymphangiogenesis and carcinoma metastasis. Oncogene 27(22):3145-155
    38. Grotz TE et al (2012) Regional lymphatic immunity in melanoma. Melanoma Res 22(1):9-8
    39. Dadras SS et al (2005) Tumor lymphangiogenesis predicts melanoma metastasis to sentinel lymph nodes. Mod Pathol 18(9):1232-242
    40. Perricone MA et al (2004) Enhanced efficacy of melanoma vaccines in the absence of B lymphocytes. J Immunother 27(4):273-81
    41. Liu L et al (2011) The calcineurin B subunit (CnB) is a new ligand of integrin alphaM that mediates CnB-induced Apo2L/TRAIL expression in macrophages. J Immunol 188(1):238-47
    42. Dong C, Robertson GP (2009) Immunoediting of leukocyte functions within the tumor microenvironment promotes cancer metastasis development. Biorheology 46(4):265-79
    43. Yang L et al (2004) Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409-21
    44. Yang L, Edwards CM, Mundy GR (2010) Gr-1+CD11b+ myeloid-derived suppressor cells: formidable partners in tumor metastasis. J Bone Miner Res 25(8):1701-706
    45. Serafini P, Borrello I, Bronte V (2006) Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 16(1):53-5
    46. Marx J (2008) Cancer immunology. Cancer’s bulwark against immune attack: MDS cells. Science 319(5860):154-56
    47. Meyer C et al (2011) Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc Natl Acad Sci USA 108(41):17111-7116
    48. Haile LA et al (2010) CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol 185(1):203-10
    49. Cerdeira AS et al (2013) Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. J Immunol 190(8):3939-948
    50. Tas F et al (2006) Circulating serum levels of angiogenic factors and vascular endothelial growth factor receptors 1 and 2 in melanoma patients. Melanoma Res 16(5):405-11
    51. Holtan SG et al (2011) Expansion of CD16-negative natural killer cells in the peripheral blood of patients with metastatic melanoma. Clin Dev Immunol 2011:316314
    52. Shenoy-Scaria AM et al (1992) Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol 149(11):3535-541
    53. Davis LS et al (1988) Decay-accelerating factor functions as a signal transducing molecule for human T cells. J Immunol 141(7):2246-252
    54. Abbott RJ et al (2007) Structural and functional characterization of a novel T cell receptor co-regulatory protein complex, CD97–CD55. J Biol Chem 282(30):22023-2032
    55. Jackson SW et al (2007) Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice. Am J Pathol 171(4):1395-404
    56. Salcido-Ochoa F et al (2010) Regulatory T cells in transplantation: does extracellular adenosine triphosphate metabolism through CD39 play a crucial role? Transplant Rev (Orlando) 24(2):52-6
    57. Deaglio S et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204(6):1257-265
    58. Quintana E et al (2010) Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell 18(5):510-23
    59. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23(1):41-6
    60. Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46(7):1181-188
    61. Pantel K, Cote RJ, Fodstad O (1999) Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91(13):1113-124
    62. Gorter A, Meri S (1999) Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol Today 20(12):576-82
    63. White DE, Rayment JH, Muller WJ (2006) Addressing the role of cell adhesion in tumor cell dormancy. Cell Cycle 5(16):1756-759
    64. Rallis C, Pinchin SM, Ish-Horowicz D (2010) Cell-autonomous integrin control of Wnt and Notch signalling during somitogenesis. Development 137(21):3591-601
    65. Hannigan G, Troussard AA, Dedhar S (2005) Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer 5(1):51-3
    66. Legate KR et al (2006) ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol 7(1):20-1
    67. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834-46
    68. Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147(1):89-04
    69. Wang H et al (2004) Tumor cell α3β1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. J Cell Biol 164(6):935-41
    70. Ralph SJ (2007) An update on malignant melanoma vaccine research: insights into mechanisms for improving the design and potency of melanoma therapeutic vaccines. Am J Clin Dermatol 8(3):123-41
    71. Terando AM, Faries MB, Morton DL (2007) Vaccine therapy for melanoma: current status and future directions. Vaccine 25(Suppl 2):B4–B16
    72. Lee JH et al (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res 11(1):107-12
    73. Polak ME et al (2009) Melanoma vaccines: the problems of local immunosuppression. Hum Immunol 70(5):331-39
    74. Farrar JD et al (1999) Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol 162(5):2842-849
    75. Umansky V et al (2008) Melanoma-specific memory T cells are functionally active in Ret transgenic mice without macroscopic tumors. Cancer Res 68(22):9451-458
    76. Lengagne R et al (2008) Distinct role for CD8 T cells toward cutaneous tumors and visceral metastases. J Immunol 180(1):130-37
    77. Kuhlman P et al (1991) The accessory function of murine intercellular adhesion molecule-1 in T lymphocyte activation. Contributions of adhesion and co-activation. J Immunol 146(6):1773-782
    78. Kelly-Rogers J et al (2006) Activation-induced expression of CD56 by T cells is associated with a reprogramming of cytolytic activity and cytokine secretion profile in vitro. Hum Immunol 67(11):863-73
    79. Anz D et al (2011) CD103 is a hallmark of tumor-infiltrating regulatory T cells. Int J Cancer 129(10):2417-426
    80. Ofori-Acquah SF, King JA (2008) Activated leukocyte cell adhesion molecule: a new paradox in cancer. Transl Res 151(3):122-28
  • 作者单位:Kimberley L. Kaufman (1)
    Swetlana Mactier (1)
    Nicola J. Armstrong (2) (3)
    Duthika Mallawaaratchy (1)
    Scott N. Byrne (4) (5)
    Lauren E. Haydu (6) (7)
    Valerie Jakrot (6)
    John F. Thompson (6)
    Graham J. Mann (6) (8)
    Richard A. Scolyer (10) (6) (9)
    Richard I. Christopherson (1)

    1. School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
    2. Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
    3. School of Mathematics and Statistics and Prince of Wales Clinical School, University of New South Wales, Kensington, NSW, 2052, Australia
    4. Discipline of Infectious Diseases and Immunology Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
    5. Discipline of Dermatology, Bosch Institute, Faculty of Medicine, Sydney Medical School, Sydney, NSW, 2006, Australia
    6. Melanoma Institute Australia, North Sydney, NSW, 2060, Australia
    7. Discipline of Surgery, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
    8. Westmead Institute of Cancer Research, The University of Sydney at Westmead Millennium Institute, Westmead, NSW, 2145, Australia
    10. Discipline of Pathology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
    9. Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
  • ISSN:1573-7276
文摘
There is an urgent need to identify more accurate prognostic biomarkers in melanoma patients, particularly in those with metastatic disease. This study aimed to identify melanoma and leukocyte surface antigens predictive of survival in a prospective series of AJCC stage IIIb/c melanoma patients (n?=?29). Live cell suspensions were prepared from melanoma metastases within lymph nodes (LN). The suspensions were immuno-magnetically separated into CD45+ (leukocyte) and CD45?/sup> (non-hematopoietic, enriched melanoma cell) fractions. Surface antigens on CD45?/sup> and CD45+ cell populations were profiled using DotScan?microarrays (Medsaic Pty. Ltd.) and showed differential abundance levels for 52 and 78 antigens respectively. Associations of the surface profiles with clinicopathologic and outcome data (median follow-up 35.4?months post LN resection) were sought using univariate (log-rank test) and multivariate (Wald’s test; modelled with patient’s age, gender and AJCC staging at LN recurrence) survival models. CD9 (p?=?0.036), CD39 (p?=?0.004) and CD55 (p?=?0.005) on CD45+ leukocytes were independently associated with distant metastasis-free survival using multivariate analysis. Leukocytes with high CD39 levels were also significantly associated with increased overall survival (OS) in multivariate analysis (p?=?0.016). LNs containing leukocytes expressing CD11b (p?=?0.025), CD49d (p?=?0.043) and CD79b (p?=?0.044) were associated with reduced OS on univariate analysis. For enriched melanoma cells (CD45?/sup> cell populations), 11 surface antigens were significantly correlated with the disease-free interval (DFI) between diagnosis of culprit primary melanoma and LN metastasis resection. Nine antigens on CD45+ leukocytes also correlated with DFI. Following validation in independent datasets, surface markers identified here should enable more accurate determination of prognosis in stage III melanoma patients and provide better risk stratification of patients entering clinical trials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700