Adverse prognostic and predictive significance of low DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in early-stage breast cancers
详细信息    查看全文
  • 作者:Tarek Abdel-Fatah (1)
    Arvind Arora (2)
    Devika Agarwal (3)
    Paul Moseley (1)
    Christina Perry (2)
    Nicola Thompson (1)
    Andrew R. Green (4)
    Emad Rakha (4)
    Stephen Chan (1)
    Graham Ball (3)
    Ian O. Ellis (4)
    Srinivasan Madhusudan (1) (2)
  • 关键词:DNA repair ; DNA ; PKcs ; Breast cancer ; Prognostic factor ; Predictive factor
  • 刊名:Breast Cancer Research and Treatment
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:146
  • 期:2
  • 页码:309-320
  • 全文大小:1,422 KB
  • 参考文献:1. Kong X, Shen Y, Jiang N, Fei X, Mi J (2011) Emerging roles of DNA-PK besides DNA repair. Cell Signal 23(8):1273-280. doi:10.1016/j.cellsig.2011.04.005 CrossRef
    2. Neal JA, Meek K (2011) Choosing the right path: does DNA-PK help make the decision? Mutat Res 711(1-):73-6. doi:10.1016/j.mrfmmm.2011.02.010 CrossRef
    3. Hill R, Lee PW (2010) The DNA-dependent protein kinase (DNA-PK): more than just a case of making ends meet? Cell Cycle 9(17):3460-469 CrossRef
    4. Meek K, Dang V, Lees-Miller SP (2008) DNA-PK: the means to justify the ends? Adv Immunol 99:33-8. doi:10.1016/S0065-2776(08)00602-0 CrossRef
    5. Salles B, Calsou P, Frit P, Muller C (2006) The DNA repair complex DNA-PK, a pharmacological target in cancer chemotherapy and radiotherapy. Pathol Biol 54(4):185-93. doi:10.1016/j.patbio.2006.01.012 CrossRef
    6. Collis SJ, DeWeese TL, Jeggo PA, Parker AR (2005) The life and death of DNA-PK. Oncogene 24(6):949-61. doi:10.1038/sj.onc.1208332 CrossRef
    7. van der Burg M, van Dongen JJ, van Gent DC (2009) DNA-PKcs deficiency in human: long predicted, finally found. Curr Opin Allergy Clin Immunol 9(6):503-09. doi:10.1097/ACI.0b013e3283327e41 CrossRef
    8. Wang SY, Peng L, Li CP, Li AP, Zhou JW, Zhang ZD et al (2008) Genetic variants of the XRCC7 gene involved in DNA repair and risk of human bladder cancer. Int J Urol 15(6):534-39. doi:10.1111/j.1442-2042.2008.02049.x CrossRef
    9. Long XD, Yao JG, Huang YZ, Huang XY, Ban FZ, Yao LM et al (2011) DNA repair gene XRCC7 polymorphisms (rs#7003908 and rs#10109984) and hepatocellular carcinoma related to AFB1 exposure among Guangxi population, China. Hepatol Res 41(11):1085-093. doi:10.1111/j.1872-034X.2011.00866.x CrossRef
    10. Hu Z, Liu H, Wang H, Miao R, Sun W, Jin G et al (2008) Tagging single nucleotide polymorphisms in phosphoinositide-3-kinase-related protein kinase genes involved in DNA damage “checkpoints-and lung cancer susceptibility. Clin Cancer Res 14(9):2887-891. doi:10.1158/1078-0432.CCR-07-1822 CrossRef
    11. Wang X, Szabo C, Qian C, Amadio PG, Thibodeau SN, Cerhan JR et al (2008) Mutational analysis of thirty-two double-strand DNA break repair genes in breast and pancreatic cancers. Cancer Res 68(4):971-75. doi:10.1158/0008-5472.CAN-07-6272 CrossRef
    12. Hsu FM, Zhang S, Chen BP (2012) Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Transl Cancer Res 1(1):22-4. doi:10.3978/j.issn.2218-676X.2012.04.01
    13. Zhuang W, Li B, Long L, Chen L, Huang Q, Liang ZQ (2011) Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res 1371:7-5. doi:10.1016/j.brainres.2010.11.044 CrossRef
    14. Du L, Zhou LJ, Pan XJ, Wang YX, Xu QZ, Yang ZH et al (2010) Radiosensitization and growth inhibition of cancer cells mediated by an scFv antibody gene against DNA-PKcs in vitro and in vivo. Radiat Oncol 5:70. doi:10.1186/1748-717X-5-70 CrossRef
    15. Shinohara ET, Geng L, Tan J, Chen H, Shir Y, Edwards E et al (2005) DNA-dependent protein kinase is a molecular target for the development of noncytotoxic radiation-sensitizing drugs. Cancer Res 65(12):4987-992. doi:10.1158/0008-5472.CAN-04-4250 CrossRef
    16. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM (2005) Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst 97(16):1180-184. doi:10.1093/jnci/dji237 CrossRef
    17. Abdel-Fatah TM, Russell R, Agarwal D, Moseley P, Abayomi MA, Perry C et al (2014) DNA polymerase beta deficiency is linked to aggressive breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression in multiple cohorts. Mol Oncol 8(3):520-32. doi:10.1016/j.molonc.2014.01.001 CrossRef
    18. Abdel-Fatah TM, Perry C, Moseley P, Johnson K, Arora A, Chan S et al (2014) Clinicopathological significance of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in oestrogen-receptor-positive breast cancer. Breast Cancer Res Treat 143(3):411-21. doi:10.1007/s10549-013-2820-7 CrossRef
    19. Abdel-Fatah TM, Albarakati N, Bowell L, Agarwal D, Moseley P, Hawkes C et al (2013) Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1) deficiency is linked to aggressive breast cancer and predicts response to adjuvant therapy. Breast Cancer Res Treat 142(3):515-27. doi:10.1007/s10549-013-2769-6 CrossRef
    20. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31(31):3997-013. doi:10.1200/JCO.2013.50.9984 CrossRef
    21. Sultana R, Abdel-Fatah T, Abbotts R, Hawkes C, Albarakati N, Seedhouse C et al (2013) Targeting XRCC1 deficiency in breast cancer for personalized therapy. Cancer Res 73(5):1621-634. doi:10.1158/0008-5472.CAN-12-2929 CrossRef
    22. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346-52
    23. Medunjanin S, Weinert S, Schmeisser A, Mayer D, Braun-Dullaeus RC (2010) Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-alpha. Mol Biol Cell 21(9):1620-628. doi:10.1091/mbc.E09-08-0724 CrossRef
    24. Loeb LA (2010) Mutator phenotype in cancer: origin and consequences. Semin Cancer Biol 20(5):279-80. doi:10.1016/j.semcancer.2010.10.006 CrossRef
    25. Loeb LA, Bielas JH, Beckman RA (2008) Cancers exhibit a mutator phenotype: clinical implications. Cancer Res 68(10):3551-557. doi:10.1158/0008-5472.CAN-07-5835 discussion 3557 CrossRef
    26. Lee HS, Choe G, Park KU, Park do J, Yang HK, Lee BL et al (2007) Altered expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) during gastric carcinogenesis and its clinical implications on gastric cancer. Int J Oncol 31(4):859-66
    27. Lee HS, Yang HK, Kim WH, Choe G (2005) Loss of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) expression in gastric cancers. Cancer Res Treat 37(2):98-02. doi:10.4143/crt.2005.37.2.98 CrossRef
    28. Moll U, Lau R, Sypes MA, Gupta MM, Anderson CW (1999) DNA-PK, the DNA-activated protein kinase, is differentially expressed in normal and malignant human tissues. Oncogene 18(20):3114-126. doi:10.1038/sj.onc.1202640 CrossRef
    29. Shao SL, Cai Y, Wang QH, Yan LJ, Zhao XY, Wang LX (2007) Expression of GLUT-1, p63 and DNA-Pkcs in serous ovarian tumors and their significance. Zhonghua zhong liu za zhi (Chin J Oncol) 29(9):697-00
    30. Soderlund Leifler K, Queseth S, Fornander T, Askmalm MS (2010) Low expression of Ku70/80, but high expression of DNA-PKcs, predict good response to radiotherapy in early breast cancer. Int J Oncol 37(6):1547-554
  • 作者单位:Tarek Abdel-Fatah (1)
    Arvind Arora (2)
    Devika Agarwal (3)
    Paul Moseley (1)
    Christina Perry (2)
    Nicola Thompson (1)
    Andrew R. Green (4)
    Emad Rakha (4)
    Stephen Chan (1)
    Graham Ball (3)
    Ian O. Ellis (4)
    Srinivasan Madhusudan (1) (2)

    1. Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
    2. Academic Unit of Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
    3. School of Science and Technology, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS, UK
    4. Division of Cancer and Stem Cells, Department of Pathology, School of Medicine, University of Nottingham, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
  • ISSN:1573-7217
文摘
DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a serine threonine kinase belonging to the PIKK family (phosphoinositide 3-kinase-like-family of protein kinase), is a critical component of the non-homologous end-joining pathway required for the repair of DNA double-strand breaks. DNA-PKcs may be involved in breast cancer pathogenesis. We evaluated clinicopathological significance of DNA-PKcs protein expression in 1,161 tumours and DNA-PKcs mRNA expression in 1,950 tumours. We correlated DNA-PKcs to markers of aggressive phenotypes, DNA repair, apoptosis, cell cycle regulation and survival. Low DNA-PKcs protein expression was associated with higher tumour grade, higher mitotic index, tumour de-differentiation and tumour type (ps?BRCA1, low XRCC1, low SMUG1, low APE1 and low Polβ was also more likely in low DNA-PKcs expressing tumours (ps?mRNA level, similarly, low DNA-PKcs was associated with poor BCSS. In patients with ER-positive tumours who received endocrine therapy, low DNA-PKcs (protein and mRNA) was associated with poor survival. In ER-negative patients, low DNA-PKcs mRNA remains significantly associated with adverse outcome. Our study suggests that low DNA-PKcs expression may have prognostic and predictive significance in breast cancers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700