Quasi-periodic variations of low energy cosmic rays
详细信息    查看全文
  • 作者:Karel Kudela ; Ismail Sabbah
  • 关键词:cosmic rays ; periodicities ; neutron monitors ; muon detectors
  • 刊名:SCIENCE CHINA Technological Sciences
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:59
  • 期:4
  • 页码:547-557
  • 全文大小:3,257 KB
  • 参考文献:1.Ahluwalia H S, Ygbuhay R C. Testing baseline stability of some neutron monitors in Europe, Africa, and Asia. Adv Space Res, 2014, 51: 1990–1995CrossRef
    2.Shea M A, Smart D F. Vertical cutoff rigidities for cosmic ray stations since 1955. In: Proc. 27th ICRC, Hamburg, 2001. 4063
    3.Mavromichalaki H, Preka-Papadema P, Petropoulos B, et al. Lowand high-frequency spectral behaviour of cosmic ray intensity for the period 1953–1966. Ann Geophys, 2003, 21: 1681–1689CrossRef
    4.Kudela K, Mavromichalaki H, Papaioannou A, et al. On mid-term periodicities in cosmic rays. Sol Phys, 2010, 266: 173–180CrossRef
    5.Jokipii J R, Owens A J. Cross correlation between cosmic-ray fluctuations and interplanetary magnetic-field fluctuations. Geophys Res Let, 1974, 1: 329CrossRef
    6.Jokipii J R. Cosmic-ray propagation, li, Diffusion in the interplanetary magnetic field. Astrophys J, 1967, 149: 405CrossRef
    7.Duldig M L. Australian cosmic ray modulation research. Publ Astron Soc Austr, 2001, 18: 12–40CrossRef
    8.Sabbah I. Solar magnetic polarity dependency of the cosmic ray diurnal variation. J Geophys Res: Space Phys, 2013, 118: 4739–4747CrossRef
    9.Firoz K A. Cosmic Rays and Space Weather. Dissertation of Doctor Degree. Kosice: University P.J. Safarik, 2008
    10.Rybanský M. Coronal index of solar activity. I -Line 5303 A. Bull Astron Inst Czech, 1975, 26: 367–377
    11.Dorotovic I M, Minarovjech M, Lorenc M, et al. Modified homogeneous data set of coronal intensities. Sol Phys, 2014, 289: 2697–2703CrossRef
    12.Badruddin, Aslam O P M. Study of the solar wind-magnetosphere coupling on diferent time scales. Planetary Space Sci, 2013, 85: 123–141CrossRef
    13.Svalgaard L, Cliver E W. Inter-hourly variability index of geomagnetic activity and its use in deriving the long-term variation of solar wind speed. J Geophys Res, 2007, 112: A10111CrossRef
    14.Cho Il-Hyun, Kwak Y S, Marubashi K, et al. Changes in sea-level pressure over South Korea associated with high-speed solar wind events. Adv Space Res, 2012, 50: 777–782CrossRef
    15.Mustajab F, Badruddin. Relative geo-effectiveness of coronal mass ejections with distinct features in interplanetary space. Planet Space Sci, 2013, 82–83: 43–61CrossRef
    16.Oh Y I, Yi Y, Bieber J W. Modulation cycles of GCR diurnal anisotropy variation. Sol Phys, 2010, 262: 199–212CrossRef
    17.Venkatesan D. Changes in amplitude of the 27-day variation in cosmic ray intensity during the solar cycle of activity. Tellus, 1958, 10
    18.Kudela K. Variability of low energy cosmic rays near Earth, exploring the solar wind. Dr. Marian Lazar (Ed.), ISBN: 978–953-51–0339-4, InTech, doi: 10.5772/37482. Available from: http://​www.​intechopen.​com/​books/​exploring-the-solar-wind/​variability-of-low-energy-cosmic-rays-near-earth, 2012
    19.Dunzlaff P, Heber B, Kopp A, et al. Observations of recurrent cosmic ray decreases during solar cycles 22 and 23. Ann Geophys, 2008, 26: 3127–3138CrossRef
    20.Gil A, Iskra K, Modzelewska R, et al. On the 27-day variations of the galactic cosmic ray anisotropy and intensity for different periods of solar magnetic cycle. Adv Space Res, 2005, 35: 687–690CrossRef
    21.Richardson I G. Energetic paricles and corotating interaction regions in the solar wind. Space Sci Rev, 2004, 111: 267–376CrossRef
    22.Agarwal R, Mishra R K, Pandey S K, et al. 27-day variation of cosmic rays along with interplanetary parameters. In: Proc. 32nd ICRC Beijing, 2001, paper icrc0129
    23.Modzelewska R, Alania M V. Dependence of the 27-day variation of cosmic rays on the global magnetic field of the Sun. Adv Space Res, 2012, 6: 716–724CrossRef
    24.Rybanský M, Rušin V, Minarovjech M. Coronal index of solar activity. Space Sci Rev, 2001, 95: 227–234CrossRef
    25.Kudela K. Space weather near Earth and energetic particles: Selected results. J Phys: Conf Ser, 2013, 409: 012017
    26.Barlyaeva T, Bard E, Abarca-del-Rio R. Rotation of the Earth, solar activity and cosmic ray intensity. Ann Geophys, 2014, 32: 761–771CrossRef
    27.Rieger E, Share G H, Forrest D J, et al. A 154-day periodicity in the occurrence of hard solar flares? Nature, 1984, 312: 623–625CrossRef
    28.Akimov L A, Belkina I L. Rieger QuasiPeriodicity in solar indices. Solar Syst Res, 2012, 46: 243–252CrossRef
    29.Chowdhury P, Khan M, Ray P C. Evaluation of the intermediate-term periodicities in solar and cosmic ray activities during cycle 23. Astrophys Space Sci, 2010, 326: 191–201CrossRef
    30.Bazilevskaya G, Broomhall A M, Elsworth Y, et al. A combined analysis of the observational aspects of the quasi-biennial oscillation in solar magnetic activity. Space Sci Rev, 2014, 186: 359–386CrossRef
    31.Valdés-Galicia J F, Pérez-Enríquez R, Otaola J A. The cosmic ray 1.68-year variation: A clue to understand the nature of solar cycle? Sol Phys, 1996, 167: 409–417CrossRef
    32.Kudela K, Rybak J, Antalova A, et al. Time evolution of low-frequency periodicities in cosmic ray intensity. Sol Phys, 2002, 35: 165–175CrossRef
    33.Kato C K, Munakata S, Yasue K, et al. McDonald, A ~1.7-year quasi-periodicity in cosmic ray intensity variation observed in the outer heliosphere. J Geophys Res, 2003, 108: 1367CrossRef
    34.Kudela K, Ananth A G, Venkatesan D. The low-frequency spectral behaviour of cosmic ray intensity. J Geophys Res: Space Phys (1978–2012), 1991, 96: 15871–15875CrossRef
    35.Okhlopkov V P. Distinctive properties of the frequency spectra of cosmic ray variations and parameters of solar activity and the interplanetary medium in solar cycles 20–23. Moscow Univ Phys Bull, 2001, 66: 99–103CrossRef
    36.Mendoza B, Velasco V M, Valdes-Galicia J F. Mid-term periodicities in the solar magnetic flux. Sol Phys, 2006, 233: 319–330CrossRef
    37.Rouillard A, Lockwood M. Oscillations in the open solar magnetic flux with a period of 1.68 years: Imprint on galactic cosmic rays and implications for heliospheric shielding. Ann Geophys, 2004, 22: 4381–4395CrossRef
    38.Charvátová I. The prominent 1.6-year periodicity in solar motion due to the inner planets. Ann Geophys, 2007, 25: 1227–1232CrossRef
    39.Parnahaj I. Quasi-periodic Variations of Cosmic Rays (in Slovak). Dissertation of Doctor Degree. Kosice: University P.J. Safarik, 2015
    40.Usoskin I G, Bazilevskaya G A, Kovaltsov G A. Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers. J Geophys Res, 116, A02104
    41.Harrison R G, Märcz F. Heliospheric timescale identified in surface atmosheric electricity. Geophys Res Let, 2007, 34: L23816CrossRef
    42.Mavromichalaki H, Petropoulos B, Plainaki C, et al. Coronal index as a solar activity index applied to space weather. Adv Space Res, 2005, 35: 410–415CrossRef
    43.Rybanský M. Coronal index of the solar activity I. Bull Astron Inst Czechosl, 1975, 26: 367–374
    44.Mursula K, Zieger B. The 1.3-year variation in solar wind speed and geomagnetic activity. Adv Space Res, 2000, 25: 1939–1942CrossRef
    45.Obridko V N, Shelting B D. Occurrence of the 1.3-year periodicity in the large-scale solar magnetic field for 8 solar cycles. Adv Space Res, 2007, 40: 1006–1014CrossRef
    46.Venkatesan D, Badruddin. Cosmic ray intensity variation in the 3D heliosphere. Space Sci Rev, 1990, 52: 121–194CrossRef
    47.Ahluwalia H S. Three activity cycle periodicity in galactic cosmic rays? In: Proc 25th ICRC, Durban, South Africa, 1997. 109–112
    48.Ahluwalia H S. Galactic cosmic rays, total solar irradiance, sunspots, Earth surface air temperature: Correlations. Ind J Radio Space Phys, 2014, 43: 141–150
    49.Singh Y P, Badruddin. Prominent short-, mid-, and long-term periodicities in solar and geomagnetic activity: Wavelet analysis, Planet. Space Sci, 2014, 96: 120–124CrossRef
    50.Perez-Peraza J, Velasco V, Kavlakov S. Wavelet coherence analysis of Atlantic hurricanes and cosmic rays. Geofísica Internacional, 2008, 47: 231–244
    51.Pérez-Peraza J, Velasco V, Libin I Y, et al. Thirty-year periodicity of cosmic rays. Adv Astronomy, 2012, 2012: 691408CrossRef
    52.Stozhkov Y I, Svirzhevsky N S, Bazilevskaya G A, et al. Cosmic rays in the stratosphere in 2008–2010. Astrophys Space Sci Trans, 2011, 7: 379–382CrossRef
    53.Stozhkov Y I, Svirzhevsky N S, Bazilevskaya G A, et al. Fluxes of Cosmic Rays in the maximum of absorption curve in the atmosphere and at the atmosphere boundary (1957–2007), preprint FIAN, 14, 2007
    54.Watanabe T T, Ogino, Abe F, et al. Cosmic ray neutron data in 1953–2011, CAWSESDB-J-OB0062, STEL, Nagoya University, 2013
    55.Kane R P. Short-term periodicities in solar indices. Sol Phys, 2005, 227: 155–175CrossRef
    56.Kane R P. Comparison of the variations of solar indices, interplanetary plasma parameters, and cosmic ray neutron monitor intensities during 1991–2001. J Geophys Res, 2003, 108: doi:10.1029/2002JA-009542
    57.Krymsky G F, Mamrukova V P, Krivoshapkin P A, et al. Recurrent variations in the high-energy cosmic ray intensity. In: Proc. 30th ICRC, Mexico, 2008, 1: 381–384
    58.Pérez-Peraza J A, Velasco-Herrera V M, Zapotitla J, et al. Search for periodicities in galactic cosmic rays, sunspots and coronal index before arrival of relativistic protons from the Sun. Bulletin of the Russian Academy of Sciences. Physics, 2011, 75: 767–769
    59.Sabbah I, Duldig M L. Solar polarity dependence of cosmic ray power spectra observed with mawson underground muon telescopes. Sol Phys, 2007, 243: 231–235CrossRef
    60.Sabbah I, Kudela K. Third harmonic of the 27 day periodicity of galactic cosmic rays: Coupling with interplanetary parameter. J Geophys Res, 2011, 116: A04103
    61.Singh Y P, Shweta G, Badruddin. Temporal variations of short-and mid-term periodicities in solar wind parameters and cosmic ray intensity. J Atmos Sol-Terr Phy, 2012, 89: 48–53CrossRef
    62.Vieira L R, Dal Lago A, Rigozo N R, et al. Near 13.5-day periodicity in Muon Detector data during late 2001 and early 2002. Adv Space Res, 2012, 49: 1615–1622CrossRef
    63.Ahluwahlia H S, Dessler A J. Diurnal variation of cosmic radiation intensity produced by a solar wind. Planet Space Sci, 1962, 9: 195CrossRef
    64.Le G M, Ye Z H, Gong J H, et al. Power spectrum analyses of cosmic rays observed by short time scale, biggest Beijing Superneutron monitor before the severe magnetic storm on Nov. 24, 2001. J Grad School Chin Acad Sci, 2002, 19: 163–167
    65.Weng L B, Fang H X, Zhang Y, et al. Correlation research between the sunspot numbers and the cosmic rays based on wavelet and cross wavelet analysis. Chin J Space Sci, 2013, 33: 13–19
    66.Le G M, Ye Z H, Gong J H, et al. Solar diurnal and semidiurnal variation characteristic of cosmic rays observed at Beijing neutron monitor during magnetic quiet days from solar cycle 22 to solar cycle 23. Chin J Space Sci, 2002, 22: 21–26
    67.El-Borie M A. On long-term periodicities in the solar-wind ion density and speed measurements during the period 1973–2000. Sol Phys, 2002, 208: 345–358CrossRef
    68.Dorman L. Cosmic Rays: Variations and Space Explorations. Elsevier Science, USA, 1974. 691
    69.Dorman L. Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, Kluwer, 2004. 855
    70.Dorman L. Cosmic rays in Magnetospheres of the Earth and other Planets. New York: Springer-Verlag New York Inc. 2009
    71.Miroshnichenko L I. Solar Cosmic Rays. Berlin: Springer, 2015CrossRef
  • 作者单位:Karel Kudela (1)
    Ismail Sabbah (2)

    1. IEP SAS Košice, Košice, Slovakia
    2. Department of Natural Sciences, College of Health Sciences, the Public Authority for Applied Education and Training, Adailiyah, Kuwait
  • 刊物类别:Engineering
  • 刊物主题:Chinese Library of Science
    Engineering, general
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1900
文摘
Cosmic rays (CR) play an important role in space weather-related studies. Their temporal variability, both of a quasi-periodic character as well as an irregular one, has been studied from ground-based direct measurements, as well as from cosmogenic nuclides, over a long time. We attempt to describe the current knowledge of selected quasi-periodicities in CR flux in the energy range above the atmospheric threshold, from direct measurements. The power spectrum density (PSD) of the CR time series as measured by neutron monitors (NMs) and by muon detectors has a rather complicated character. Along with the shape (slope) of the PSD, knowledge of the contribution of quasi-periodic variations (q-per) to the CR signal is of importance for the modulation, as well as for checking the links of CR to space weather, and/or to space climate effects. The rotation of the Earth and solar rotation cause two types of mechanisms behind the certain q-per observed in secondary CR on the Earth’s surface. Solar activity and solar magnetic field cyclicities contribute to the q-per signals in CR if studied over a longer time. The complexity of the spatial structure of the interplanetary magnetic field (IMF) and its evolution within the heliosphere, in addition to the changes in the geomagnetic field, cause variability in contributions of the q-per in CR. Wavelet spectra are useful tools for checking the fine structure of q-per and their temporal behaviour. Over a long time NMs and muon telescopes provide information about q-per in CR.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700