Numerical method of quantum capture probability determination for molecular collisions at ultralow temperatures
详细信息    查看全文
  • 作者:A. A. Buchachenko (1) alexei@classic.chem.msu.su
  • 关键词:barrierless reactions – ; capture approximation – ; statistical model of adiabatic channels – ; chemistry of ultralow temperatures
  • 刊名:Moscow University Chemistry Bulletin
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:67
  • 期:4
  • 页码:159-167
  • 全文大小:240.8 KB
  • 参考文献:1. Ospelkaus, S., Ni, K.-K., Wang, D., de Miranda, M.HG., Neyenhuis, B., Qu茅m茅ner, G., Julienne, P.S., Bohn, J.L., Jin, D.S., and Ye, J., Science, 2010, vol. 327, p. 853.
    2. Doyle, J., Friedrich, B., Krems, R.V., and Masnou-Seeuws, F., Eur. Phys. J. D, 2004, vol. 31, p. 149.
    3. Ni, K.-K., Ospelkaus, S., Wang, D., Qu茅m茅ner, G., Neyenhuis, B., de Miranda, M.H.G., Bohn, J.L., Ye, J., and Jin, D.S., Nature, 2010, vol. 464, p. 1324.
    4. de Miranda, M.H.G., Chotia, A., Neyenhuis, B., Wang, D., Qu茅m茅ner, G., Ospelkaus, S., Bohn, J.L., Ye, J., and Jin, D.S., Nat. Phys., 2011, vol. 7, p. 502.
    5. Honvault, P. and Launay, J.-M., J. Chem. Phys., 1999, vol. 111, p. 6665.
    6. Honvault, P. and Launay, J.-M., J. Chem. Phys., 2001, vol. 114, p. 1057.
    7. Fern谩ndez-Ramos, A., Miller, J.A., Klippenstein, S.J., and Truhlar, D.G., Chem. Rev., 2006, vol. 106, p. 4518.
    8. Langevin, P., Ann. Chem. Phys., 1905, vol. 5, p. 245.
    9. Wigner, E.P., Trans. Faraday Soc., 1938, vol. 34, p. 29.
    10. Pechukas, P., Ann. Rev. Phys. Chem., 1981, vol. 32, p. 159.
    11. Quack, M. and Troe, J., Ber. Bunsen-Ges. Phys. Chem., 1975, vol. 79, p. 170.
    12. Troe, J., J. Chem. Phys., 1987, vol. 87, p. 2773.
    13. Clary, D.C., Ann. Rev. Phys. Chem., 1990, vol. 41, p. 61.
    14. Troe, J., Adv. Chem. Phys., 1997, vol. 101, p. 819.
    15. Clary, D.C., Mol. Phys., 1985, vol. 54, p. 605.
    16. Datteo, C.E. and Clary, D.C., J. Chem. Phys., 1989, vol. 90, p. 7216.
    17. Dashevskaya, E.I., Maergoiz, A.I., Troe, J., Litvin, I., and Nikitin, E.E., J. Chem. Phys., 2003, vol. 118, p. 7313.
    18. Nikitin, E.E. and Troe, J., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 1540.
    19. Nikitin, E.E. and Troe, J., J. Phys. Chem. A, 2010, vol. 114, p. 9762.
    20. Auzinsh, M., Dashevskaya, E.I., Litvin, I., Nikitin, E.E., and Troe, J., J. Phys. Chem. A, 2010, vol. 115, p. 5027.
    21. Vogt, E. and Wannier, G.E., Phys. Rev., 1954, vol. 95, p. 1190.
    22. Frank, W.M., Land, D.J., and Spector, R.M., Rev. Mod. Phys., 1971, vol. 43, p. 36.
    23. Klots, C.E., Chem. Phys. Lett., 1976, vol. 38, p. 61.
    24. Fabrikant, I.I. and Hotop, H., Phys. Rev. A: At., Mol., Opt. Phys., 2001, vol. 63, p. 022706.
    25. Dashevskaya, E.I., Litvin, I., Nikitin, E.E., and Troe, J., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1270.
    26. Dashevskaya, E.I., Litvin, I., Nikitin, E.E., and Troe, J., Phys. Chem. Chem. Phys., 2009, vol. 11, p. 9364.
    27. Nikitin, E.E. and Troe, J., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 9011.
    28. O’Malley, T.F., Spruch, L., and Rosenberg, L., J. Math. Phys., 1961, vol. 2, p. 491.
    29. Watanabe, S. and Greene, C.H., Phys. Rev. A: At., Mol., Opt. Phys., 1980, vol. 22, p. 158.
    30. Cavagnero, M.J., Phys. Rev. A: At., Mol., Opt. Phys., 1994, vol. 50, p. 2841.
    31. Gao, B., Phys. Rev. A: At., Mol., Opt. Phys., 1998, vol. 58, p. 1728.
    32. Gao, B., Phys. Rev. A: At., Mol., Opt. Phys., 2008, vol. 78, p. 012702.
    33. Greene, C.H., Rau, A.R.P., and Fano, U., Phys. Rev. A: At., Mol., Opt. Phys., 1982, vol. 26, p. 2411.
    34. Seaton, M.J., Rep. Prog. Phys., 1983, vol. 46, p. 167.
    35. Staanum, P., Kraft, S.D., Lange, J., Wester, R., and Weidem眉ller, M., Phys. Rev. Lett., 2006, vol. 96, p. 023201.
    36. Zahzam, N., Vogt, T., Mudrich, M., Comparat, D., and Pillet, P., Phys. Rev. Lett., 2006, vol. 96, p. 023202.
    37. Hudson, E.R., Gilfoy, N.B., Kotochigova, S., Sage, J.M., and DeMille, D., Phys. Rev. Lett., 2008, vol. 100, p. 203201.
    38. Gao, B., Phys. Rev. A: At., Mol., Opt. Phys., 2009, vol. 80, p. 012702.
    39. Qu茅m茅ner, G. and Bohn, J.L., Phys. Rev. A: At., Mol., Opt. Phys., 2010, vol. 81, p. 022702.
    40. Idziaszek, Z. and Julienne, P.S., Phys. Rev. Lett., 2010, vol. 104, p. 113202.
    41. Kotochigova, S., New J. Phys, 2010, vol. 12, p. 073041.
    42. Idziaszek, Z., Qu茅m茅ner, G., Bohn, J.L., and Julienne, P.S., Phys. Rev. A: At., Mol., Opt. Phys., 2010, vol. 82, p. 020703.
    43. Gao, B., Phys. Rev. Lett., 2010, vol. 105, p. 263203.
    44. Micheli, A., Idziaszek, Z., Pupillo, G., Baranov, M.A., Zoller, P., and Julienne, P.S., Phys. Rev. Lett., 2010, vol. 105, p. 073202.
    45. Light, J.C. and Altenberger-Siczek, A., J. Chem. Phys., 1976, vol. 64, p. 1907.
    46. Clary, D.C., Mol. Phys., 1982, vol. 48, p. 619.
    47. Clary, D.C. and Henshaw, J.P., Faraday Disc. Chem. Soc., 1987, vol. 84, p. 333.
    48. Rackham, E.J., Huarte-Larranaga, F., and Manolopoulos, D.E., Chem. Phys. Lett., 2001, vol. 343, p. 356.
    49. Rackham, E.J., Gonzales-Lezana, T., and Manolopoulos, D.E., J. Chem. Phys., 2003, vol. 119, p. 12895.
    50. Orzel, C., Walhout, M., Sterr, U., Julienne, P.S., and Rolston, S.L., Phys. Rev. A: At., Mol., Opt. Phys.., 1999, vol. 59, p. 1926.
    51. Lin, S.Y. and Guo, H., J. Chem. Phys., 2003, vol. 119, p. 11602.
    52. Lin, S.Y. and Guo, H., J. Chem. Phys., 2004, vol. 120, p. 9907.
    53. Truhlar, D.G. and Kuppermann, A., J. Am. Chem. Soc., 1971, vol. 93, p. 1840.
    54. Qu茅m茅ner, G., Honvault, P., Launay, J.-M., Soldan, P., Potter, D.E., and Hutson, J.M., Phys. Rev. A: At., Mol., Opt. Phys., 2005, vol. 71, p. 032722.
    55. Landau, L.D. and Lifshits, E.M., Quantum Mechanics, Oxford: Butterworth-Heinemann, 2003.
    56. Le Roy, R.J., Quickert, K.A., and Le Roy D.J, Trans. Faraday Soc., 1970, vol. 66, p. 2997.
    57. Fr枚man, N. and Fr枚man, P.-O., JWKB Approximation, Amsterdam: North-Holland, 1965.
    58. Ni, K.-K., Ospelkaus, S., de Miranda, M.H.G., Pe’er, A., Neyenhuis, B., Zirbel, J.J., Kotochigova, S., Julienne, P.S., Jin, D.S., and Ye, J., Science, 2008, vol. 322, p. 231.
    59. Bethe, H.A., Phys. Rev., 1935, vol. 47, p. 747.
    60. Wigner, E.P., Phys. Rev., 1948, vol. 73, p. 1002.
    61. Sadeghpour, H.R., Bohn, J.L., Cavagnero, M.J., Esry, B.D., Fabrikant, I.I., Macek, J.H., and Rau, A.R.P., J. Phys. B: At., Mol. Opt. Phys., 2000, vol. 33, p. R93.
    62. Qu茅m茅ner, G., Balakrishnan, N., and Dalgarno, A., in Cold Molecules: Theory, Experiment, Applications., Krems, R.V., Stwalley, W.C., and Friedrich, B., Eds., New York: CRC Press, 2009, p. 69.
    63. Sold谩n, P., Cvitaš, M.T., Hutson, J.M., Honvault, P., and Launay, J.-M., Phys. Rev. Lett., 2002, vol. 89, p. 153201.
    64. Qu茅m茅ner, G., Launay, J.-M., and Honvault, P., Phys. Rev. A: At., Mol., Opt. Phys., 2007, vol. 75, p. 050701(R).
    65. Cvitaš, M.T., Sold谩n, P., Hutson, J.M., Honvault, P., and Launay, J.-M., J. Chem. Phys., 2007, vol. 127, p. 074302.
    66. Reid, B.P., Janda, K.C., and Halberstadt, N., J. Phys. Chem., 1992, vol. 92, p. 87.
    67. Delgado-Barrio, G. and Beswick, J.A., in Structure and Dynamics of Non-Rigid Molecular Systems, Smeyers, Y.G. Ed., Dordrecht: Kluwer, 1994, p. 203.
  • 作者单位:1. Department of Chemistry, Moscow State University, Moscow, Russia
  • ISSN:1935-0260
文摘
The numerical method suggested by Truhlar and Kuppermann (J. Am. Chem. Soc., 1971, vol. 93, p. 1840) to determine tunneling probabilities is adapted for quantum capture calculations in barrierless molecular processes by means of absorbing boundary conditions imposed in the range of strong interactions. It is shown that the phase uncertainty of the singular scattering problem, which arises during the extrapolation of the long-range interaction potential to short distances, is revealed as the oscillatory dependence of the transmission coefficient on the point at which the boundary conditions were imposed. The mean transmission coefficient computation makes it possible to decrease the uncertainty of the results. The method is evaluated to calculate the KRb + KRb reaction rates and K2 + K vibrational relaxation at ultralow temperatures using model dispersion and adiabatic channel potentials derived from ab initio calculations. The results are in good agreement with the data of analytic models based on the solution of the singular scattering problem close to Bethe-Wigner energy threshold and, within the capture approximation accuracy, with the data of a rigorous quantum scattering theory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700