Biological and Biochemical Potential of Sea Snake Venom and Characterization of Phospholipase A2 and Anticoagulation Activity
详细信息    查看全文
  • 作者:Palani Damotharan ; Anguchamy Veeruraj…
  • 关键词:Venom ; Hemolytic ; Proteolytic activity ; Activated partial thromboplastin time (APTT) ; Thrombin time (TT) ; Prothrombin time (PT)
  • 刊名:Indian Journal of Clinical Biochemistry
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:31
  • 期:1
  • 页码:57-67
  • 全文大小:781 KB
  • 参考文献:1.Kini RM. Structure function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45:1147–61.PubMed CrossRef
    2.Dennis EA. Phospholipases. In: Boyer P, editor. The enzymes, vol. 16. 3rd ed. New York: Academic Press; 1983. p. 307–53.
    3.Kini RM. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 2003;42:827–40.PubMed CrossRef
    4.Kini RM. Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J. 2006;397:377–87.PubMed PubMedCentral CrossRef
    5.Matsui T, Fujimura Y, Titani K. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta. 2000;1477(1–2):146–56.PubMed CrossRef
    6.Lewis RL, Gutmann L. Snake venoms and the neuromuscular junction. Semin Neurol. 2004;24:175–9.PubMed CrossRef
    7.Tu AT. Sea snake venoms and neurotoxins. J Agric Food Chem. 1974;22(1):36–43.
    8.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J Biol Chem. 1951;193:256–73.
    9.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(259):680–5.PubMed CrossRef
    10.Heunssen C, Dowdle EB. Eletrophoretic analysis of plasminogen activators in polyacrilamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980;102:196–202.CrossRef
    11.United States Pharmacopoeia USA. Heparin/official monographs. Twinbrook: United States Pharmacopoeia Convention Inc.; 1985. p. 482.
    12.Ribeiro JM, Schneider M, Guimaraes JA. Purification and characterization of prolixin S (Nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus. Biochem J. 1995;308:243–9.PubMed PubMedCentral CrossRef
    13.Proctor RR, Rapaport SI. The partial thromboplastin time with kaolin: a simple screening test for the first stage plasma clotting deficiencies. Am J Clin Pathol. 1961;36:212–9.PubMed
    14.Paniprasad K, Venkateshwaran K. Micro hemolytic assay: training manual on advanced techniques in marine biotechnology. Mumbai: CAS in Fishery Science Central Institute of Fisheries Education; 1997. p. 1–73.
    15.Marinetti GV. The action of phospholipase A on lipoproteins. Biochim Biophys Acta. 1965;98:554–65.PubMed CrossRef
    16.Lu QM, Jin Y, Wei JF, Wang WY, Xiong YL. Biochemical and biological properties of Trimeresurus jerdonii venom and characterization of a platelet aggregation-inhibiting acidic phospholipase A2. J Nat Toxins. 2002;11:25–33.PubMed
    17.Núñez V, Castro V, Murillo R, Ponce-Soto LA, Merfort I, Lomonte B. Inhibitory effects of Piper umbellatum and Piper peltatum extracts towards myotoxic phospholipases A2 from Bothrops snake venoms: isolation of 4-nerolidylcatechol as active principle. Phytochemistry. 2005;66:1017–25.PubMed CrossRef
    18.Vargas LJ, Londoño M, Quintana JC, Rua C, Segura C, Lomonte B, Núñez V. An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. Comp Biochem Physiol Part B. 2012;161:341–7.CrossRef
    19.Marsh H. Preliminary studies of the venoms of some vermivorous Conidae. Toxicon. 1970;8:271.PubMed CrossRef
    20.Lansdown AB. Calcium: a potential central regulator in wound healing in the skin. Wound Repair Regen. 2002;10:271–85.PubMed CrossRef
    21.Suwan J, Zhang Z, Li B, Vongchan P, Meepowpan P, Zhang F, Mousa SA, Mousa S, Premanode B, Kongtawelert P, Linhardt RJ. Sulfonation of papain treated chitosan and its mechanism for anticoagulant activity. Carbohydr Res. 2009;344(10):1190–6.PubMed PubMedCentral CrossRef
    22.Sivan G, Kedersha N, Elroy-Stein O. Ribosomal slowdown mediates translational arrest during cellular division. Mol Cell Biol. 2007;27(19):6639–46.PubMed PubMedCentral CrossRef
    23.Siigur E, Mahar M, Siigur J. Beta-fibrinogenase from the venom of Vipera lebetina. Toxicon. 1991;29:107–18.PubMed CrossRef
    24.Kemparaju K, Jagadeesha DK, Shashidhara Murthy R, Girish KS. A non-toxic anticoagulant metalloprotease: purification and characterization from Indian cobra (Naja naja) venom. Toxicon. 2002;40:667–75.PubMed CrossRef
    25.Perez C, Suntravat M, Nuchprayoon I. Comparative study of anticoagulant and procoagulant properties of 28 snake venoms from families Elapidae, Viperidea, and purified Russels viper venom-facter X activator (RVV-X). Toxicon. 2010;56:5544–53.
    26.Pinto AFM, Dobrovolski R, Veiga ABG, Guimarães JA. Lonofibrase, a novel afibrinogenase from Lonomia obliqua caterpillars. Thromb Res. 2004;113:147–54.PubMed CrossRef
    27.Belmonte G, Menestrina G, Pederzolli C, Križaj I, Gubenšek F, Turk T, Maček P. Primary and secondary structure of a pore-forming toxin from the sea anemone, Actinia equina L., and its association with lipid vesicles. Biochim Biophys Acta. 1994;1192:197–204.PubMed CrossRef
    28.Karthikayalu S, Dharani G, Kirubagaran R, Venkatesan R, Yogeeswaran G, Ravindran M. Isolation, purification and charectrization of haemolytic toxin from Heteractis magnifica. In: Proceeding of MBR, national seminar on new frontiers in marine bioscience Research. 2004. p. 17–24.
    29.Veeruraj A, Arumugam M, Ajithkumar T, Balasubramanian T. Isolation and biological properties of neurotoxin from sea anemone (Stichodactyla mertensii, S. haddoni). Inter J Toxicol. 2008;5(2):1–10.
    30.Barbaro L, Rossi JP, Vetillard F, Nezan J, Jactel H. The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure. J Biogeogr. 2007;34:652–64.CrossRef
    31.Díaz C, Gutièrrez JM, Lomonte B. Isolation and characterization of basic myotoxic phospholipases A2 from Bothrops godmani (Godman’s pit viper) snake venom. Arch Biochem Biophys. 1992;298:135–42.PubMed CrossRef
    32.Dayhoff MO. Computer analysis of protein evolution. Sci Am. 1969;221:86–95.PubMed CrossRef
    33.Tremeau O, Lemaire DCP, Pinkasfeld S, Ducancel F, Boulain JC, Ménez A. Genetic engineering of snake toxins. The functional site of erabutoxin a, as delineated by site-directed mutagenesis, includes variant residues. J Biol Chem. 1995;270:9362–9.PubMed CrossRef
    34.Siddiqui BS, Afshan FG, Faizi S, Naqvi SNH, Tariq RM. Two insecticidal tetratnortriterpenoids from Azadirachta indica. Phytochemistry. 2000;53:371–4.PubMed CrossRef
    35.Chiang HC, Imanari M. Assay of aspirin, ethenzamide and caffein mixture by 13C NMR spectrometry. J Chin Chem Soc. 1981;28:43–5.CrossRef
    36.Pieters LAC, Vlietinck AJ. Applications of quantitative 1H- and 13C-NMR spectroscopy in drug analysis. J Pharm Biomed Anal. 1989;7(12):1405–17.PubMed CrossRef
  • 作者单位:Palani Damotharan (1) (3)
    Anguchamy Veeruraj (1) (2)
    Muthuvel Arumugam (1)
    Thangavel Balasubramanian (1)

    1. Faculty of Marine Sciences, Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, India
    3. Marine Biotechnology, National Institute of Ocean Technology (NIOT), Ministry of Marine Science Govt. of India, Chennai, 600 100, India
    2. Centre for Ocean Research, (SU-NIOT Joint Initiative Research Centre), Sathyabama University, Rajiv Gandhi Salai, Chennai, 600 119, India
  • 刊物主题:Biochemistry, general; Microbiology; Chemistry/Food Science, general; Pathology;
  • 出版者:Springer India
  • ISSN:0974-0422
文摘
This study is designed to isolate and purify a novel anti-clotting protein component from the venom of Enhydrina schistosa, and explore its biochemical and biological activities. The active protein was purified from the venom of E. schistosa by ion-exchange chromatography using DEAE-cellulose. The venom protein was tested by various parameters such as, proteolytic, haemolytic, phospholipase and anti-coagulant activities. 80 % purity was obtained in the final stage of purification and the purity level of venom was revealed as a single protein band of about 44 kDa in SDS-polyacrylamide electrophoresis under reducing conditions. The results showed that the Potent hemolytic activity was observed against cow, goat, chicken and human (A, B and O positive) erythrocytes. Furthermore, the clotting assays showed that the venom of E. schistosa significantly prolonged in activated partial thromboplastin time, thrombin time, and prothrombin time. Venomous enzymes which hydrolyzed casein and gelatin substrate were found in this venom protein. Gelatinolytic activity was optimal at pH 5–9 and 1H NMR analysis of purified venom was the base line information for the structural determination. These results suggested that the E. schistosa venom holds good promise for the development of novel lead compounds for pharmacological applications in near future. Keywords Venom Hemolytic Proteolytic activity Activated partial thromboplastin time (APTT) Thrombin time (TT) Prothrombin time (PT)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700