Systematic evaluation of thymol derivatives possessing stereogenic or prostereogenic centers
详细信息    查看全文
  • 作者:Armando Talavera-Alemán ; Gabriela Rodríguez-García ; Yliana López…
  • 关键词:Thymol ; Asteraceae ; 8 ; 9 ; Epoxythymol derivatives ; 8 ; 9 ; Dehydrothymol derivatives
  • 刊名:Phytochemistry Reviews
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:15
  • 期:2
  • 页码:251-277
  • 全文大小:1,062 KB
  • 参考文献:Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI (1994) Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 32:31–36PubMed CrossRef
    Ahmed AA, Jakupovic J, Eid F, Ali AA (1988) 11-Hydroxyjasionone, a new sesquiterpene type from Jasonia montana. Phytochemistry 27:3875–3877CrossRef
    Angeles-López G, Pérez-Vásquez A, Hernández-Luis F, Déciga-Campos M, Bye R, Linares E, Mata R (2010) Antinociceptive effect of extracts and compounds from Hofmeisteria schaffneri. J Ethnopharmacol 131:425–432PubMed CrossRef
    Aponte JC, Jin Z, Vaisberg AJ, Castillo D, Málaga E, Lewis WH, Sauvain M, Gilman RH, Hammond GB (2011) Cytotoxic and anti-infective phenolic compounds isolated from Mikania decora and Cremastosperma microcarpum. Planta Med 77:1597–1599PubMed CrossRef
    Bohlmann F, Gupta RK (1982) Ineupatorolide-like sesquiterpene lactones from Ditrichia viscosa. Phytochemistry 21:1443–1445CrossRef
    Bohlmann F, Jakupovic J (1979) Zwei neue Sesquiterpenlactone und eine Neuesesquiterpensäure aus Helenium puberulum. Phytochemistry 18:131–133CrossRef
    Bohlmann F, Lonitz M (1978) Neue Eudesman-Derivate und andere Sesquiterpene aus Verbesina-Arten. Chem Ber 111:254–263CrossRef
    Bohlmann F, Suwita A (1978) Neue Phloroglucin-derivate aus Leontonyx-Arten sowie weitere Verbindungen aus vertretern der Tribus Inuleae. Phytochemistry 17:1929–1934CrossRef
    Bohlmann F, Wolf-Rainer A (1979) Ein neuer Sesquiterpenalkohol und andere Inhaltsstoffe aus Doronicum pardalianches. Phytochemistry 18:668–671CrossRef
    Bohlmann F, Zdero C (1970) Neue Benzofuranderivate aus Doronicum austriacum Jacq. Tetrahedron Lett 41:3575–3576CrossRef
    Bohlmann F, Zdero C (1972) Neue Thymol-derivate aus Arnica amplexicaulis. Tetrahedron Lett 28:2827–2828CrossRef
    Bohlmann F, Zdero C (1976) Notiz über neue Inhaltsstoffe aus Wedelia forsteriana Endl. Chem Ber 109:791–792CrossRef
    Bohlmann F, Zdero C (1977a) Ein neues Thymol-derivat aus Callilepis laureola. Phytochemistry 16:1854–1855CrossRef
    Bohlmann F, Zdero C (1977b) Neue Norkauren-und Thymol-derivate aus Athrixia-Arten. Phytochemistry 16:1773–1776CrossRef
    Bohlmann F, Zdero C (1977c) Neue Sesquiterpenlactone und Thymol-derivate aus Inula-Arten. Phytochemistry 16:1243–1245CrossRef
    Bohlmann F, Zdero C (1981) Caryophyllene derivatives and a hydroxyisocomene from Pulicaria dysenterica. Phytochemistry 20:2529–2534CrossRef
    Bohlmann F, Zdero C (1982) Five tricyclic sesquiterpenes from Callilepis salicifolia. Phytochemistry 21:139–142CrossRef
    Bohlmann F, Niedballa U, Schulz J (1969a) Über einige Thymolderivate aus Gaillardia- und Helenium-Arten. Chem Ber 102:864–871CrossRef
    Bohlmann F, Schulz J, Bühmann U (1969b) Struktur und synthese eines Thymolderivates aus Helenium-Arten (1). Tetrahedron Lett 10:4703–4704CrossRef
    Bohlmann F, Zdero C, Grenz M (1976) Inhaltsstoffe einiger Gattungen der Tribus Helenieae und Senecioneae. Phytochemistry 15:1309–1310CrossRef
    Bohlmann F, Jakupovic J, Lonitz M (1977a) Über Inhaltsstoffe der Eupatorium-Gruppe. Chem Ber 110:301–314CrossRef
    Bohlmann F, Mahanta PK, Suwita A, Suwita A, Natu AA, Zdero C, Dorner W, Ehlers D, Grenz M (1977b) Neue Sesquiterpenlactone und andere Inhaltsstoffe aus vertretern der Eupatorium-Gruppe. Phytochemistry 16:1973–1981CrossRef
    Bohlmann F, Mahanta PK, Jakupovic J, Rastogi RC, Natu AA (1978a) New sesquiterpene lactones from Inula species. Phytochemistry 17:1165–1172CrossRef
    Bohlmann F, Zitzkowski P, Suwita A, Fiedler L (1978b) cis-Kolaveninsäure und weitere Inhaltsstoffe aus vertretern der Tribus Eupatorieae. Phytochemistry 17:2101–2105CrossRef
    Bohlmann F, Natu AA, Kerr K (1979) Thymol-derivate aus Neurolaena-Arten. Phytochemistry 18:489–490CrossRef
    Bohlmann F, Dhar AK, Ahmed M (1980a) Thymol derivatives from Doronicum hungariicum. Phytochemistry 19:1850–1851CrossRef
    Bohlmann F, Jakupovic J, King RM, Robinson H (1980b) Chromones and flavans from Marshallia obovata. Phytochemistry 19:1815–1820CrossRef
    Bohlmann F, Jakupovic J, Robinson H, King RM (1980c) Neue Diterpene aus Schkuhria-Arten. Phytochemistry 19:881–884CrossRef
    Bohlmann F, Jakupovic J, Schuster A (1981a) Further eudesmanolides and xanthanolides from Telekia speciosa. Phytochemistry 20:1891–1893CrossRef
    Bohlmann F, Kramp W, Gupta RK, King RM, Robinson H (1981b) Four guaianolides and other constituents from three Kaunia species. Phytochemistry 20:2375–2378CrossRef
    Bohlmann F, Zdero C, King RM, Robinson H (1981c) Heliangolides, and nerolidol and p-hydroxyacetophenone derivatives from Calea species. Phytochemistry 20:1643–1647CrossRef
    Bohlmann F, Adler A, Jakupovic J, King RM, Robinson H (1982a) A dimeric germacranolide and other sesquiterpene lactones from Mikania species. Phytochemistry 21:1349–1355CrossRef
    Bohlmann F, Gupta RK, King RM, Robinson H (1982b) Two furanoheliangolides from Calea angusta. Phytochemistry 21:2117–2118CrossRef
    Bohlmann F, Jakupovic J, King RM, Robinson H (1982c) New labdane derivatives from Madia sativa. Phytochemistry 21:1103–1107CrossRef
    Bohlmann F, Singh P, Jakupovic J, Robinson H, King RM (1982d) An epoxygermacranolide and further constituents from Mikania species. Phytochemistry 21:705–707CrossRef
    Bohlmann F, Grenz M, Jakupovic J, King RM, Robinson H (1983a) Four heliangolides and other sesquiterpenes from Brasilia sickii. Phytochemistry 22:1213–1218CrossRef
    Bohlmann F, Jakupovic J, Ahmed M, Schuster A (1983b) Sesquiterpene lactones and other constituents from Schistostephium species. Phytochemistry 22:1623–1636CrossRef
    Bohlmann F, Jakupovic J, Schuster A (1983c) 8-Hydroxypegolettiolide, a sesquiterpene lactone with a new carbon skeleton and further constituents from Pegolettia senegalensis. Phytochemistry 22:1637–1644CrossRef
    Bohlmann F, Zdero C, King RM, Robinson H (1983d) Thymol derivatives from Porophyllum riedelii. Phytochemistry 22:1035–1036CrossRef
    Bohlmann F, Hartono L, Zdero C, Jakupovic J (1985) Constituents of the genus Oxylobus. Phytochemistry 24:1111–1112CrossRef
    Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 77:130–136PubMed CrossRef
    Brookes BK, Candy HA, Pegel KH (1985) Two Thymol derivatives from Callilepsis laureola. Planta Med 51:32–34PubMed CrossRef
    Bustos-Brito C, Sánchez-Castellanos M, Esquivel B, Calderón JS, Calzada F, Yepez-Mulia L, Hernández-Barragán A, Joseph-Nathan P, Cuevas G, Quijano L (2014) Structure, absolute configuration, and antidiarrheal activity of a thymol derivative from Ageratina cylindrica. J Nat Prod 77:358–363PubMed CrossRef
    Chang RJ, Qin JJ, Cheng XR, Jin HZ, Zhang WD (2012) Chemical constituents from Inula helianthus-aquatica. Nat Prod Res Develop 24:291–297
    Chen JJ, Tsai YC, Hwang TL, Wang TC (2011) Thymol, benzofuranoid, and phenylpropanoid derivatives: anti-inflammatory constituents from Eupatorium cannabinum. J Nat Prod 74:1021–1027PubMed CrossRef
    Chen LC, Lee TH, Sung PJ, Shu CW, Lim YP, Cheng MJ, Kuo WL, Chen JJ (2014) New thymol derivatives and cytotoxic constituents from the root of Eupatorium cannabinum ssp. asiaticum. Chem Biodivers 11:1374–1380PubMed CrossRef
    Cheng XR, Ye J, Ren J, Zeng Q, Zhang F, Qin JJ, Shen YH, Zhang WD, Jin HZ (2012) Terpenoids from Inula sericophylla Franch. and their chemotaxonomic significance. Biochem Syst Ecol 42:75–78CrossRef
    Delle Monache G, Delle Monache F, Becerra J, Silva M, Menichini F (1984) Thymol derivatives from Eupatorium glechonophyllum. Phytochemistry 23:1947–1950CrossRef
    Didry N, Dubreuilb L, Pinkasa M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25–28PubMed CrossRef
    Fang N, Gage DA, Mabry TJ (1988) Sesquiterpene lactones and other constituents from Piptothrix areolare. Phytochemistry 27:203–205CrossRef
    García PG, García SE, Martínez GI, Scior TRF, Salvador JL, Martínez PMM, del Río RE (2011) Analgesic effect of leaf extract from Ageratina glabrata in the hot plate test. Braz J Pharmacogn 21:928–935CrossRef
    González AG, Bermejo Barrera J, Estévez Rosas F, Yanes Hernández AC, Espiñeira J, Joseph-Nathan P (1986a) Thymol derivatives from Schizogyne glaberrima. Phytochemistry 25:2889–2891CrossRef
    González AG, Bermejo Barrera J, Estévez Rosas F, Yanes Hernández AC, Joseph-Nathan P (1986b) Derivados fenólicos del género Schizogyne. Rev Latinoamer Quím 17:54–56
    González AG, Bermejo Barrera J, Estévez Rosas F, Castañeda Acosta J, Estévez Rosas F (1988) Anti-inflammatory activity of Schizogyne species. Fitoterapia 59:476–478
    González AG, Bermejo Barrera J, Yanes AC, Díaz JG, Rodríguez Pérez EM (1989) Chromenes and benzofurans from Ageratina glechonophylla. Phytochemistry 28:2520–2522CrossRef
    González AG, Bermejo Barrera J, Triana Méndez J, Eiroa Martínez JL, López Sánchez M (1993) Thymol derivatives from Vieraea laevigata. Phytochemistry 32:202–203CrossRef
    Guerrero C, Silva M, Maldonado E, Martínez M (1978) Ácido eupaglábrico un nuevo compuesto aislado de Eupathorium glabratum H.B.K. Rev Latinoamer Quim 9:71–75
    Heilmann J, Müller E, Merfort I (1999) Flavonoid glucosides and dicaffeoylquinic acids from flowerheads of Buphthalmum salicifolium. Phytochemistry 51:713–718CrossRef
    Hernández JD, Román LU, Rodríguez MJ, Espiñeira J, Joseph-Nathan P (1986) Areolal, a thymol from Piptothrix areolare. Phytochemistry 25:1743–1744CrossRef
    Herz W, Sosa VE (1988) Sesquiterpene lactones and other constituents of Arnica acaulis. Phytochemistry 27:155–159CrossRef
    Javan AJ, Javan MJ (2014) Electronic structure of some thymol derivatives correlated with the radical scavenging activity: theoretical study. Food Chem 165:451–459PubMed CrossRef
    Jiang HX, Li Y, Pan J, Gao K (2006) Terpenoids from Eupatorium fortunei Turcz. Helv Chim Acta 89:558–566CrossRef
    Joseph-Nathan P, Gordillo-Román B (2015) Vibrational circular dichroism absolute configuration determination of natural products. In: Kinghorn AD, Falk H, Kobayashi J (eds) Progress in the chemistry of organic natural products, vol 100. Springer International Publishing, Switzerland, p 311
    Joseph-Nathan P, Wesener JR, Günther H (1984) A two-dimensional NMR study of angelic and tiglic acid. Org Magn Reson 22:190–191CrossRef
    Kos O, Lindenmeyer MT, Tubaro A, Sosa S, Merfort I (2005) New sesquiterpene lactones from arnica tincture prepared from fresh flowerheads of Arnica montana. Planta Med 71:1044–1052PubMed CrossRef
    Liang H, Bao F, Dong X, Tan R, Zhang C, Lu Q, Cheng Y (2007) Antibacterial thymol derivatives isolated from Centipeda minima. Molecules 12:1606–1613PubMed CrossRef
    Maldonado E, Márquez CL, Ortega A (1992) A thymol derivative from Calea nelsonii. Phytochemistry 31:2527–2528CrossRef
    Marco JA, Sanz-Cervera JF, Manglano E (1993) Chlorinated thymol derivatives from Inula crithmoides. Phytochemistry 33:875–878CrossRef
    Martínez VM, Sánchez FA, Joseph-Nathan P (1987) Thymol derivatives from Calea nelsonii. Phytochemistry 26:2577–2579CrossRef
    Metwally MA, Dawidar AM (1985) A thymol derivative from Inula crithmoides. Phytochemistry 24:1377–1378CrossRef
    Miski M, Gage DA, Mabry TJ (1987) Terpenoids of Piptothrix sinaloae. Phytochemistry 26:2753–2757CrossRef
    Mossa JS, El-Feraly FS, Muhammad I, Zaw K, Mbwambo ZH, Pezzuto JM, Fong HHS (1997) Sesquiterpene lactones and thymol esters from Vicoa pentanema. J Nat Prod 60:550–555CrossRef
    Paolini J, Muselli A, Bernardini AF, Bighelli A, Casanova J, Costa J (2007) Thymol derivatives from essential oil of Doronicum corsicum L. Flavour Fragr J 22:479–487CrossRef
    Passreiter CM, Isman MB (1997) Antifeedant bioactivity of sesquiterpene lactones from Neurolaena lobata and their antagonism by γ-aminobutyric acid. Biochem Syst Ecol 25:371–377CrossRef
    Passreiter CM, Florack M, Willuhn G, Goerz G (1988) Allergic contact dermatitis caused by Asteraceae. Identification of an 8,9-epoxythymol-diester as the contact allergen of Arnica sachalinensis. Derm Beruf Umw 36:79–82
    Passreiter CM, Matthiesen U, Willuhn G (1998) 10-Acetoxy-9-chloro-8,9-dehydrothymol and further thymol derivatives from Arnica sachalinensis. Phytochemistry 49:777–781CrossRef
    Passreiter CM, Willuhn G, Weber H, Schleifer KJ (1999) A dimeric thymol derivative from Arnica sachalinensis. Tetrahedron 55:2997–3006CrossRef
    Pérez AL, Romo de Vivar A (1994) The monoterpene 9-hydroxythymol from Bahia schaffneri var. aristata. Phytochemistry 36:1081–1082CrossRef
    Pérez-Vásquez A, Linares E, Bye R, Cerda-García-Rojas CM, Mata R (2008) Phytotoxic activity and conformational analysis of thymol analogs from Hofmeisteria schaffneri. Phytochemistry 69:1339–1347PubMed CrossRef
    Polouse AJ, Croteau R (1978) Biosynthesis of aromatic monoterpenes: conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch Biochem Biophys 187:307–314CrossRef
    Radulović N, Blagojević P, Palić R, Zlatković (2010) Volatiles of Telekia speciosa (Schreb.) Baumg. (Asteraceae) from Serbia. J Essent Oil Res 22:250–254
    Romo de Vivar A, Cuevas LA, Guerrero C (1971) Eupaglabrina, un nuevo terpeno aislado de Eupatorium glabratum. Rev Latinoam Quim 2:32–34
    Rustaiyan A, Faramarzi S (1988) Sesquiterpene lactones from Serratula latifolia. Phytochemistry 27:479–481CrossRef
    Shen YC, Lo KL, Kuo YH, Khalil AT (2005) Cytotoxic sesquiterpene lactones from Eupatorium kiirunense, a coastal plant of Taiwan. J Nat Prod 68:745–750PubMed CrossRef
    Shi Y-P, Guo W, Yang C, Jia Z-J (1998) Two new aromatic derivatives from Carpesium lipskyi. Planta Med 64:671–672PubMed CrossRef
    Stojakowska A, Malarz J, Kisiel W (2004) Thymol derivatives from a root culture of Inula helenium. Z Naturforsch C 59:606–608PubMed CrossRef
    Stojakowska A, Kędzia B, Kisiel W (2005) Antimicrobial activity of 10-isobutyryloxy-8,9-epoxythymol isobutyrate. Fitoterapia 76:687–690PubMed CrossRef
    Stojakowska A, Michalska K, Malarz J (2006) Simultaneous quantification of eudesmanolides and thymol derivatives from tissues of Inula helenium and I. royleana by reversed-phase high-performance liquid chromatography. Phytochem Anal 17:157–161PubMed CrossRef
    Stojakowska A, Malarz J, Zubek S, Turnau K, Kisiel W (2010) Terpenoids and phenolics from Inula ensifolia. Biochem Syst Ecol 38:232–235CrossRef
    Stojakowska A, Malarz J, Kisiel W (2015) Quantitative analysis of sesquiterpene lactones and thymol derivatives in extracts from Telekia speciosa. Phytochem Lett 11:378–383CrossRef
    Su BN, Takaishi Y, Yabuuchi T, Kusumi T, Tori M, Takaoka S, Honda G, Ito M, Takeda Y, Kodzhimatov OK, Ashurmetov O (2001) Sesquiterpenes and monoterpenes from the bark of Inula macrophylla. J Nat Prod 64:466–471PubMed CrossRef
    Tamayo-Castillo G, Jakupovic J, Bohlmann F, Rojas A, Castro V, King RM (1988) Germacranolides and other constituents from Ageratina species. Phytochemistry 27:2893–2897CrossRef
    Tori M, Ohara Y, Nakashima K, Sono M (2001) Thymol derivatives from Eupatorium fortunei. J Nat Prod 64:1048–1051PubMed CrossRef
    Trang ND, Wanner MJ, Koomen GJ, Dung NX (1993) New acetophenone and thymol derivatives from Eupatorium stoechadosmum. Planta Med 59:480–481PubMed CrossRef
    Wajs-Bonikowska A, Stojakowska A, Kalemba D (2012) Chemical composition of essential oils from a multiple shoot culture of Telekia speciosa and different plant organs. Nat Prod Commun 7:625–628PubMed
    Wang C, Zhang X, Wei P, Cheng X, Ren J, Yan S, Zhang W, Jin H (2013) Chemical constituents from Inula wissmanniana and their anti-inflammatory activities. Arch Pharm Res 36:1516–1524PubMed CrossRef
    Wang Y, Li J, Wang H, Jin DQ, Chen H, Xu J, Ohizumi Y, Guo Y (2014) Thymol derivatives from Eupatorium fortunei and their inhibitory activities on LPS-induced NO production. Phytochem Lett 7:190–193CrossRef
    Weremczuk-Jeżyna I, Kisiel W, Wysokinska H (2006) Thymol derivatives from hairy roots of Arnica montana. Plant Cell Rep 25:993–996PubMed CrossRef
    Willuhn G, Junior I, Wendisch D (1986) Desmethoxy-encecalin und Thymolderivate aus Arnica sachalinensis. Planta Med 52:349–351CrossRef
    Wimmer P, Buysch HJ, Puppe L (1991) Process for the preparation of thymol. US patent 5,030,770, 9 July 1991
    Wu TS, Niwa M, Furukawa H, Kuoh CS (1985) Eupatriol, a new monoterpene from Eupatorium tashiroi Hayata. Chem Pharm Bull 33:4005–4006CrossRef
    Xu Q, Xie H, Xiao H, Wei X (2013) Phenolic constituents from the roots of Mikania micrantha and their allelopathic effects. J Agric Food Chem 61:7309–7314PubMed CrossRef
    Xu T, Gherib M, Bekhechi C, Atik-Bekkara F, Casabianca H, Tomi F, Casanova J, Bighelli A (2015) Thymyl esters derivatives and a new natural product modhephanone from Pulicaria mauritanica Coss. (Asteraceae) root oil. Flavour Fragr J 30:83–90CrossRef
    Yoshida T, Mori K, He G (1995) Inulavosin, a new thymol dimer with piscicidal activity from Inula nervosa. Heterocycles 41:1923–1926CrossRef
    Zdero C, Bohlmann F, Niemeyer HM (1990) Sesquiterpene lactones from Perityle emoryi. Phytochemistry 29:891–894CrossRef
    Zee OP, Kim DK, Lee KR (1998) Thymol derivatives from Carpesium divaricatum. Arch Pharm Res 21:618–620PubMed CrossRef
    Zhao J, Li Y, Liu Q, Gao K (2010) Antimicrobial activities of some thymol derivatives from the roots of Inula hupehensis. Food Chem 120:512–516CrossRef
    Zhou ZY, Liu WX, Pei G, Ren H, Wang J, Xu QL, Xie HH, Wan FH, Tan JW (2013) Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J Agric Food Chem 61:11792–11799PubMed CrossRef
    Zhu JX, Qin JJ, Wang HR, Zhu Y, Zhang WD, Jin HZ (2011) Monoterpenes and other chemical constituents from the aerial parts of Inula japonica. Chem Nat Comp 47:303–305CrossRef
  • 作者单位:Armando Talavera-Alemán (1)
    Gabriela Rodríguez-García (1)
    Yliana López (1)
    Hugo A. García-Gutiérrez (1)
    J. Martín Torres-Valencia (2)
    Rosa E. del Río (1)
    Carlos M. Cerda-García-Rojas (3)
    Pedro Joseph-Nathan (3)
    Mario A. Gómez-Hurtado (1)

    1. Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, 58030, Morelia, Michoacán, Mexico
    2. Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Km 4.5 Carretera Pachuca-Tulancingo, 42184, Mineral de la Reforma, Hidalgo, Mexico
    3. Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, 07000, Mexico, D. F., Mexico
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Biochemistry
    Organic Chemistry
    Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1572-980X
文摘
Thymol (2-isopropyl-5-methylphenol) is an aromatic molecule typically distributed in the genera Thymus and Origanum, which possesses both pharmacological and industrial relevance. This review highlights thymol derivatives with a stereogenic or prostereogenic center, which are distributed in 42 genera of the Asteraceae family whose chemotaxonomy is also outlined. In order to achieve a systematic analysis, which includes a structural examination and accounts for the vegetal sources, the reviewed thymol derivatives were grouped into mono-, di-, and multisubstituted compounds. According to the substitution on the aromatic ring, as well as on the isopropyl residue, and considering the functional groups, an evaluation of the 1H NMR signals, including multiplicities, was carried out. Optical activity data compilation of thymol derivatives revealed that 21 molecules show no optical activity in spite of having a stereogenic center, while two groups of 16 and 15 compounds exhibit, respectively, levorotatory and dextrorotatory optical activity. In addition, two thymol derivatives showed different optical behavior depending on the vegetal source, and only in a single case, the absolute configuration of a thymol derivative is known. Some 10 % of the known functionalized thymol derivatives have been evaluated biologically as antibacterial, anti-inflammatory, antiprotozoal, antioxidant, cytotoxic, piscicidal or allelopathic agents, being the last biological activity the most assayed one.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700