High frequency of the X-chromosome inactivation in young female patients with high-grade glioma
详细信息    查看全文
  • 作者:Gang Li (1) (5)
    Zhiguo Zhang (1)
    Tianbo Jin (2)
    Hongjuan Liang (1)
    Yanyang Tu (3)
    Li Gong (4)
    Zhongping Chen (5)
    Guodong Gao (1)
  • 关键词:Skewed X ; chromosome inactivation ; Androgen receptor gene ; Glioma ; High ; grade ; Cancer predisposition ; Laser microdissection
  • 刊名:Diagnostic Pathology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:444KB
  • 参考文献:1. Ostrom QT, Barnholtz-Sloan JS: Current state of our knowledge on brain tumor epidemiology. / Curr Neurol Neurosci Rep 2011, 11:329-35. CrossRef
    2. Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani UA, Edwards BK: Annual report to the nation on the status of cancer, 1975-007, featuring tumors of the brain and other nervous system. / J Natl Cancer Inst 2011, 103:714-36. CrossRef
    3. Reuss D, Von Deimling A: Hereditary tumor syndromes and gliomas. / Recent Results Cancer Res 2009, 171:83-02. CrossRef
    4. Zinn PO, Colen RR, Kasper EM, Burkhardt JK: Extent of resection and radiotherapy in GBM: A 1973 to 2007 surveillance, epidemiology and end results analysis of 21,783 patients. / Int J Oncol 2013, 42:929-34.
    5. Rajaraman P, Melin BS, Wang Z, McKean-Cowdin R, Michaud DS, Wang SS, Bondy M, Houlston R, Jenkins RB, Wrensch M, Yeager M, Ahlbom A, Albanes D, Andersson U, Freeman LE, Buring JE, Butler MA, Braganza M, Carreon T, Feychting M, Fleming SJ, Gapstur SM, Gaziano JM, Giles GG, Hallmans G, Henriksson R, Hoffman-Bolton J, Inskip PD, Johansen C, Kitahara CM, / et al.: Genome-wide association study of glioma and meta-analysis. / Hum Genet 2012, 131:1877-888. CrossRef
    6. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner JC, Chang S, Giannini C, Halder C, Kollmeyer TM, Kosel ML, LaChance DH, McCoy L, O'Neill BP, Patoka J, Pico AR, Prados M, Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T, Wiemels J, Yang P, Wiencke JK: Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. / Nat Genet 2009, 41:905-08. CrossRef
    7. Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier B, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, Andersson U, Henriksson R, Bergenheim AT, Feychting M, L?nn S, Ahlbom A, Schramm J, Linnebank M, Hemminki K, Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir K, Swerdlow A, Lathrop M, Bondy M, Houlston RS: Genome-wide association study identifies five susceptibility loci for glioma. / Nat Genet 2009, 41:899-04. CrossRef
    8. Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y, Enciso- Mora V, Idbaih A, Delattre JY, Hoang-Xuan K, Marie Y, Boisselier B, Carpentier C, Wang XW, Di Stefano AL, Labussiere M, Gousias K, Schramm J, Boland A, Lechner D, Gut I, Armstrong G, Liu Y, Yu R, Lau C, Di Bernardo MC, Robertson LB, Muir K, Hepworth S, Swerdlow A, / et al.: Chromosome 7p11.2 (EGFR) variation influences glioma risk. / Hum Mol Genet 2011, 20:2897-904. CrossRef
    9. Liu Y, Shete S, Hosking F, Robertson L, Houlston R, Bondy M: Genetic advances in glioma: susceptibility genes and networks. / Curr Opin Genet Dev 2010, 20:239-44. CrossRef
    10. Yang TH, Kon M, Hung JH, Delisi C: Combinations of newly confirmed Glioma-Associated loci link regions on chromosomes 1 and 9 to increased disease risk. / BMC Med Genomics 2011, 4:63. CrossRef
    11. Jin TB, Zhang JY, Li G, Li SQ, Yang B, Chen C, Cai LB: TP53 and RPA3 gene variations were associated with risk of glioma in a Chinese Han population. / Cancer Biother Radiopharm 2013, 28:248-53. CrossRef
    12. Hartmann C, Mueller W, Von Deimling A: Pathology and molecular genetics of oligodendroglial tumors. / J Mol Med(Berl) 2004, 82:638-55. CrossRef
    13. Reifenberger G, Collins VP: Pathology and molecular genetics of astrocytic gliomas. / J Mol Med (Berl) 2004, 82:656-70. CrossRef
    14. Song X, Zhou K, Zhao Y, Huai C, Zhao Y, Yu H, Chen Y, Chen G, Chen H, Fan W, Lu D, Mao Y: Fine mapping analysis of a region of 20q13.33 identified five independent susceptibility loci for glioma in a Chinese Han population. / Carcinogenesis 2012, 33:1065-071. CrossRef
    15. Chen H, Chen Y, Zhao Y, Fan W, Zhou K, Liu Y, Zhou L, Mao Y, Wei Q, Xu J, Lu D: Association of sequence variants on chromosomes 20, 11, and 5 (20q13.33, 11q23.3, and 5p15.33) with glioma susceptibility in a Chinese population. / Am J Epidemiol 2011, 173:915-22. CrossRef
    16. Lyon MF: Gene action in the X-chromosome of the mouse [Mus musculus L]. / Nature 1961, 190:372-73. CrossRef
    17. Carrel L, Willard HF: X inactivation profile reveals extensive variability in X-linked gene expression. / Nature 2005, 434:400-04. CrossRef
    18. Lyon MF: X-chromosome inactivation and developmental pattern in mammals. / Biol Rev 1971, 47:1-5. CrossRef
    19. Bolduc V, Chagnon P, Provost S, Dube MP, Belisle C, Gingras M, Mollica L, Busque L: No evidence that skewing of X chromosome inactivation patterns is transmitted to offspring in humans. / J Clin Invest 2008, 118:333-41. CrossRef
    20. Minks J, Robinson WP, Brown CJ: A skewed view of X chromosome inactivation. / J Clin Invest 2008, 118:20-3. CrossRef
    21. Zheng J, Deng J, Jiang L, Yang L, You Y, Hu M, Li N, Wu H, Li W, Li H, Lu J, Zhou Y: Heterozygous Genetic Variations of FOXP3 in Xp11.23 Elevate breast cancer risk in Chinese population via skewed X-chromosome inactivation. / Hum Mutat 2013, 34:619-28.
    22. Kristiansen M, Langerod A, Knudsen GP, Weber BL, Borresen-Dale AL, ?rstavik KH: High frequency of skewed X inactivation in young breast cancer patients. / J Med Genet 2002, 39:30-3. CrossRef
    23. Kristiansen M, Knudsen GP, Maguire P, Margolin S, Pedersen J, Lindblom A, ?rstavik KH: High incidence of skewed X chromosome inactivation in young patients with familial non-BRCA1/BRCA2 breast cancer. / J Med Genet 2005, 42:877-80. CrossRef
    24. Buller RE, Sood AK, Lallas T, Buekers T, Skilling JS: Association between non-random X-chromosome inactivation and BRCA1 mutation in germline DNA of patients with ovarian cancer. / J Natl Cancer Inst 1999, 91:339-46. CrossRef
    25. Li G, Su Q, Liu GQ, Gong L, Zhang W, Wang SF, Zhu SJ, Zhang HL, Feng YM, Zhang YH: Skewed X-chromosome inactivation of bood cells is associated with early development of lung cancer in females. / Oncol Rep 2006, 16:859-64.
    26. Li G, Jin TB, Liang HJ, Zhang W, Gong L, Su Q, Gao GD: Skewed X-chromosome inactivation in patients with esophageal carcinoma. / Diagn Pathol 2013, 8:55. CrossRef
    27. Gigineishvili D, Shengelia N, Shalashvili G, Rohrmann S, Tsiskaridze A, Shakarishvili R: Primary brain tumour epidemiology in Georgia: first-year results of a population-based study. / J Neurooncol 2013, 112:241-46. CrossRef
    28. Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. / Acta Neuropathol 2007, 114:97-09. CrossRef
    29. Gong L, Li YH, Su Q, Li G, Zhang WD, Zhang W: Use of X-chromosome inactivationpattern and laser microdissection to determine the clonal origin of focal nodular hyperplasia of the liver. / Pathology 2009, 40:348-55. CrossRef
    30. Gong L, Zhang WD, Li YH, Liu XY, Yao L, Han XJ, Zhu SJ, Lan M, Zhang W: Clonal Status and Clinicopathological Features of Langerhans Cell Histiocytosis. / J Int Med Res 2010, 38:1099-105. CrossRef
    31. Allen RC, Zoghbi HY, Moseley AB: Methylation of Hpa II and Hha I sites near the polymorphic CAG repeat in the human androgen receptor gene correlates with X chromosome inactivation. / Am J Hum Genet 1992, 51:1229-239.
    32. Lucas DR, Shroyer KR, McCarthy PJ, Markham NE, Fujita M, Enomoto TE: Desmoid tumor is a clonal cellular proliferation: PCR amplification of HUMARA for analysis of patterns of X-chromosome inactivation. / Am J Surg Pathol 1997, 21:306-11. CrossRef
    33. Vogelstein B, Fearon ER, Hamilton SR, Preisinger AC, Willard HF, Michelson AM, Riggs AD, Orkin S: Clonal analysis using recombinant DNA probes from the X-chromosome. / Cancer Res 1987, 47:4806-813.
    34. Gale RE, Wheadon H, Linch DC: X-chromosome inactivation patterns using HPRT and PGK polymorphisms in haematologically normal and post-chemotherapy females. / Br J Haematol 1991, 79:193-97. CrossRef
    35. Lind-Landstr?m T, Varughese RK, Sundstr?m S, Torp SH: Expression and clinical significance of the proliferation marker minichromosome maintenance protein 2 (Mcm2) in diffuse astrocytomas WHO grade II. / Diagn Pathol 2013, 8:67. CrossRef
    36. Habberstad AH, Gulati S, Torp SH: Evaluation of the proliferation markers Ki-67/MIB-1, mitosin, survivin, pHH3, and DNA topoisomerase IIα in human anaplastic astrocytomas–an immunohistochemical study. / Diagn Pathol 2011, 6:43. CrossRef
    37. Hemminki K, Tretli S, Sundquist J, Johannesen TB, Granstrom C: Familial risks in nervous-system tumours: a histologyspecific analysis from Sweden and Norway. / Lancet Oncol 2009, 10:481-88. CrossRef
    38. Scheurer ME, Etzel CJ, Liu M, El-Zein R, Airewele GE, Malmer B, Aldape KD, Weinberg JS, Yung WK, Bondy ML: Aggregation of cancer in first- degree relatives of patients with glioma. / Cancer Epidemiol Biomarkers Prev 2007, 16:2491-495. CrossRef
    39. Farrell CJ, Plotkin SR: Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von Hippel-Lindau, and other syndromes. / Neurol Clin 2007,25(viii):925-46. CrossRef
    40. Seidel MG, Rami B, Item C, Schober E, Zeitlhofer P, Huber WD, Heitger A, Bodamer OA, Haas OA: Concurrent FOXP3- and CTLA4-associated genetic predisposition and skewed X chromosome inactivation in an autoimmune disease-prone family. / Eur J Endocrinol 2012, 167:131-34. CrossRef
    41. Brix TH, Hegedüs L: Twin studies as a model for exploring the aetiology of autoimmune thyroid disease. / Clin Endocrinol (Oxf) 2012, 76:457-64. CrossRef
    42. P?oski R, Szymański K, Bednarczuk T: The genetic basis of graves' disease. / Curr Genomics 2011, 12:542-63. CrossRef
    43. Brix TH, Hegedüs L: Twins as a tool for evaluating the influence of genetic susceptibility in thyroid autoimmunity. / Ann Endocrinol (Paris) 2011, 72:103-07. CrossRef
    44. Medema RH, Burgering BM: The X factor: skewing X inactivation towards cancer. / Cell 2007, 129:1253-254. CrossRef
    45. Swierczek SI, Agarwal N, Nussenzveig RH, Rothstein G, Wilson A, Artz A, Prchal JT: Hematopoiesis is not clonal in healthy elderly women. / Blood 2008, 112:3186-193. CrossRef
    46. Aruna M, Dasgupta S, Sirisha PV, Andal Bhaskar S, Tarakeswari S, Singh L, Reddy BM: Role of androgen receptor CAG repeat polymorphism and X-inactivation in the manifestation of recurrent spontaneous abortions in Indian women. / PLoS One 2011,6(3):e17718. doi:10.1371/ journal. pone. 0017718. CrossRef
    47. Hafner C, Toll A, Fernández-Casado A, Earl J, Marqués M, Acquadro F, Méndez-Pertuz M, Urioste M, Malats N, Burns JE, Knowles MA, Cigudosa JC, Hartmann A, Vogt T, Landthaler M, Pujol RM, Real FX: Multiple oncogenic mutations and clonal relationship in spatially distinct benign human epidermal tumors. / Proc Natl Acad Sci USA 2010, 107:20780-0785. CrossRef
    48. Gontan C, Achame EM, Demmers J, Barakat TS, Rentmeester E, van IJcken W, Grootegoed JA, Gribnau J: RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. / Nature 2012, 485:386-90. CrossRef
  • 作者单位:Gang Li (1) (5)
    Zhiguo Zhang (1)
    Tianbo Jin (2)
    Hongjuan Liang (1)
    Yanyang Tu (3)
    Li Gong (4)
    Zhongping Chen (5)
    Guodong Gao (1)

    1. Department of Neurosurgery, Tangdu hospital, the Fourth Military Medical University, 710038, Xi’an, China
    5. Department of Neurosurgery, State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
    2. National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences, Northwest University, 710069, Xi’an, China
    3. Department of Clinical Experimental Surgery, Tangdu hospital, the Fourth Military Medical University, 710038, Xi’an, China
    4. Department of Pathology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi’an, China
文摘
Background Gliomas are common tumors and high-grade ones account for 62% of primary malignant brain tumors. Though current evidence have suggested that inherited risks play a role in glioma susceptibility, it was conveyed that glioma was such a complex disease, and the direct genetic contribution to glioma risk factors and its relation to other factors should be discussed more deeply. X-chromosome inactivation (XCI) is the mechanism by which gene dosage equivalence is achieved between female mammals with two X chromosomes and male mammals with a single X chromosome. As skewed XCI has been linked to development of some solid tumors, including ovarian, breast, and pulmonary and esophageal carcinomas, it is challenging to elucidate the relation of skewed XCI to high-grade gliomas development. Objective The present study aimed to determine the general concordance between XCI pattern in blood cells and brain tissues, and SXCI frequencies in female patients with high-grade glioma compared to healthy controls. Methods 1,103 Chinese females without a detectable tumor and 173 female high-grade glioma patients, were detected in the study. Normal brain tissues surrounding the lesions in gliomas were obtained from 49 patients among the 173 ones, with the microdissection using a laser microdissection microscope Genomic DNA was extracted from the peripheral blood cells and the normal brain tissues from the subjects. Exon 1 of androgen receptor (AR) gene was amplified, and its products of different alleles were resolved on denaturing polyacrylamide gels and visualized after silver staining. The corrected ratios (CR) of the products before and after HpaII digestion were calculated. Results Occurrence of SXCI was detected in both the patients and controls at similar frequencies. However, the phenomenon, as defined as CR?≥-, was more frequent in the patients aging ?0 (23.6%) compared to the corresponding reference group (5.1%, P <0.0001). When CR?≥-0 was adopted, the frequencies were 5.5% and 1.6%, respectively. Their difference did not attain statistical significance (P--.10). When detected, both blood cells and brain tissue were compared after determination of a high concordance of XCI between blood cells and brain tissue collected from the same individuals (n--8, r =0.57, P <0.01). Conclusions The data from the current study demonstrated that SXCI may be a predisposing factor for development of high-grade glioma in young female patients and further study will verify its suitability as a biomarker to assess susceptibility of young female patients to high-grade glioma. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1935066233982578

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700