1H-NMR based metabonomic profiling of human esophageal cancer tissue
详细信息    查看全文
  • 作者:Liang Wang (1)
    Jie Chen (1)
    Longqi Chen (2)
    Pengchi Deng (3)
    Qian bu (1)
    Pu Xiang (1)
    Manli Li (1)
    Wenjie Lu (1)
    Youzhi Xu (1)
    Hongjun Lin (1)
    Tianming Wu (1)
    Huijuan Wang (1)
    Jing Hu (1)
    Xiaoni Shao (1)
    Xiaobo Cen (1)
    Ying-Lan Zhao (1)
  • 关键词:Metabonomic profiling ; Human esophageal cancer ; 1H ; NMR
  • 刊名:Molecular Cancer
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:12
  • 期:1
  • 全文大小:794KB
  • 参考文献:1. Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. / CA Cancer J Clin 2012, 62:10-9. CrossRef
    2. Hirst J, Smithers BM, Gotley DC, Thomas J, Barbour A: Defining cure for esophageal cancer: Analysis of actual 5-year survivors following esophagectomy. / Ann Surg Oncol 2011, 18:1766-774. CrossRef
    3. Allum WH, Stenning SP, Bancewicz J, Clark PI, Langley RE: Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer. / J Clin Oncol 2009, 27:5062-067. CrossRef
    4. Kelsen DP, Winter KA, Gunderson LL, Mortimer J, Estes NC, Haller DG, Ajani JA, Kocha W, Minsky BD, Roth JA: Long-term results of RTOG trial 8911 (USA Intergroup 113): a random assignment trial comparison of chemotherapy followed by surgery compared with surgery alone for esophageal cancer. / J Clin Oncol 2007, 25:3719-725. CrossRef
    5. Ajani JA: Carcinoma of the esophagus: is biology screaming in my deaf ears? / J Clin Oncol 2005, 23:4256-258. CrossRef
    6. Hsu WH, Hsu PK, Hsieh CC, Huang CS, Wu YC: The metastatic lymph node number and ratio are independent prognostic factors in esophageal cancer. / J Gastrointest Surg 2009, 13:1913-920. CrossRef
    7. Tomizawa Y, Wang KK: Screening, surveillance, and prevention for esophageal cancer. / Gastroenterol Clin N 2009, 38:59-3. CrossRef
    8. Tew WP, Kelsen DP, Ilson DH: Targeted therapies for esophageal cancer. / Oncologist 2005, 10:590-01. CrossRef
    9. Wang DH, Souza RF: Biology of Barrett’s esophagus and esophageal adenocarcinoma. / Gastrointest Endosc Clin N Am 2011, 21:25-8. CrossRef
    10. Ekman S, Bergqvist M, Heldin CH, Lennartsson J: Activation of growth factor receptors in esophageal cancer—implications for therapy. / Oncologist 2007, 12:1165-177. CrossRef
    11. Nicholson JK, Lindon JC, Holmes E: 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. / Xenobiotica 1999, 29:1181-189. CrossRef
    12. Fiehn O: Metabolomics-the link between genotypes and phenotypes. / Plant Mol Bio 2002, 48:155-71. CrossRef
    13. Nicholson JK, Connelly J, Lindon JC, Holmes E: Metabonomics: a platform for studying drug toxicity and gene function. / Nat Rev Drug Discov 2002, 1:153-62. CrossRef
    14. Claudino WM, Quattrone A, Biganzoli L, Pestrin M, Bertini I, Di Leo A: Metabolomics: available results, current research projects in breast cancer, and future applications. / J Clin Oncol 2007, 25:2840-846. CrossRef
    15. Yang J, Xu G, Hong Q, Liebich HM, Lutz K, Schmülling RM, Wahl HG: Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. / J Chromatogr B 2004, 813:53-8. CrossRef
    16. Xue R, Lin Z, Deng C, Dong L, Liu T, Wang J, Shen XA: Serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. / Rapid Commun Mass Sp 2008, 22:3061-068. CrossRef
    17. Bogdanov M, Matson WR, Wang L, Matson T, Saunders-Pullman R, Bressman SS, Beal MF: Metabolomic profiling to develop blood biomarkers for Parkinson's disease. / Brain 2008, 131:389-96. CrossRef
    18. Shi C, Wu C, Cao A, Sheng HZ, Yan X, Liao M: NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-109, a novel anti-HBV compound, induced hepatotoxicity in rats. / Toxicol Lett 2007, 173:161-67. CrossRef
    19. Wei L, Liao P, Wu H, Li X, Pei F, Li W, Wu Y: Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. / Toxicol Appl Pharm 2008, 227:417-29. CrossRef
    20. Gowda G, Zhang S, Gu H, Asiago V, Shanaiah N, Raftery D: Metabolomics-based methods for early disease diagnostics. / Expert Rev Mol Diagn 2008, 8:617-33. CrossRef
    21. Pan Z, Raftery D: Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. / Anal Bioanal Chem 2007, 387:525-27. CrossRef
    22. Cao Z, Wu LP, Li YX, Guo YB, Chen YW, Wu RH: Change of choline compounds in sodium selenite-induced apoptosis of rats used as quantitative analysis by in vitro 9.4T MR spectroscopy. / World J Gastroentero 2008, 14:3891-896. CrossRef
    23. Cheng LL, Burns MA, Taylor JL, He W, Halpern EF, McDougal WS, Wu CL: Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. / Cancer Res 2005, 65:3030-034.
    24. Van Asten JJ, Cuijpers V, Hulsbergen-van De Kaa C, Soede-Huijbregts C, Witjes JA, Verhofstad A, Heerschap A: High resolution magic angle spinning NMR spectroscopy for metabolic assessment of cancer presence and Gleason score in human prostate needle biopsies. / Magn Reson Mater Phy 2008, 21:435-42. CrossRef
    25. Piotto M, Moussallieh FM, Dillmann B, Imperiale A, Neuville A, Brigand C, Bellocq JP, Elbayed K, Namer I: Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1 H magnetic resonance spectroscopy. / Metabolomics 2009, 5:292-01. CrossRef
    26. Astrakas LG, Zurakowski D, Tzika AA, Zarifi MK, Anthony DC, De Girolami U, Tarbell NJ, Black PM: Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. / Clin Cancer Res 2004, 10:8220-228. CrossRef
    27. Whitehead TL, Kieber-Emmons T: Applying in vitro NMR spectroscopy and 1 H NMR metabonomics to breast cancer characterization and detection. / Prog Nucl Mag Res Sp 2005, 47:165-74. CrossRef
    28. Beckonert O, Monnerjahn J, Bonk U, Leibfritz D: Visualizing metabolic changes in breast‐cancer tissue using 1 H-NMR spectroscopy and self-organizing maps. / NMR Biomed 2003, 16:1-1. CrossRef
    29. Yakoub D, Keun HC, Goldin R, Hanna GB: Metabolic profiling detects field effects in nondysplastic tissue from esophageal cancer patients. / Cancer Res 2010, 70:9129-136. CrossRef
    30. Zhang J, Bowers J, Liu L, Wei S, Gowda GA, Hammoud Z, Raftery D: Esophageal Cancer Metabolite Biomarkers Detected by LC-MS and NMR Methods. / PLoS One 2012, 7:e30181. CrossRef
    31. Wu H, Xue R, Tang Z, Deng C, Liu T, Zeng H, Sun Y, Shen X: Metabolomic investigation of gastric cancer tissue using gas chromatography/mass spectrometry. / Anal Bioanal Chem 2010, 396:1385-395. CrossRef
    32. Tiziani S, Lopes V, Günther UL: Early stage diagnosis of oral cancer using 1 H NMR-based metabolomics. / Neoplasia 2009, 11:269-76.
    33. Gavaghan C, Wilson I, Nicholson J: Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA. / FEBS Lett 2002, 530:191-96. CrossRef
    34. Postic C, Dentin R, Girard J: Role of the liver in the control of carbohydrate and lipid homeostasis. / Diabetes Metab 2004, 30:398-08. CrossRef
    35. Fan TW, Lane AN, Higashi RM, Yan J: Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. / Metabolomics 2011, 7:257-69. CrossRef
    36. Williamson G, Day A, Plumb G, Couteau D: Human metabolic pathways of dietary flavonoids and cinnamates. / Biochem Soc Trans 2000, 28:16-2.
    37. Zhang S, Nagana Gowda GA, Asiago V, Shanaiah N, Barbas C, Raftery D: Correlative and quantitative 1 H NMR-based metabolomics reveals specific metabolic pathway disturbances in diabetic rats. / Anal Biochem 2008, 383:76-4. CrossRef
    38. Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis? / Nature Rev Cancer 2004, 4:891-99. CrossRef
    39. Warburg O: On the origin of cancer cells. / Science 1956, 123:309-14. CrossRef
    40. Eng CH, Abraham RT: Glutaminolysis yields a metabolic by-product that stimulates autophagy. / Autophagy 2010, 6:968-70. CrossRef
    41. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC: Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). / J Proteome Res 2009, 8:352-61. CrossRef
    42. Hasim A, Ali M, Mamtimin B, Jun-Qi MA, Qiao-Zhi LI, Abudula A: Metabonomic signature analysis of cervical carcinoma and precancerous lesions in women by 1 H NMR spectroscopy. / Exp Ther Med 2012, 3:945-51.
    43. Yang Y, Li C, Nie X, Feng X, Chen W, Yue Y, Tang H, Deng F: Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1 H NMR spectroscopy in conjunction with multivariate data analysis. / J Proteome Res 2007, 6:2605-614. CrossRef
    44. DeBerardinis RJ, Cheng T: Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. / Oncogene 2009, 29:313-24. CrossRef
    45. Wise DR, Thompson CB: Glutamine addiction: a new therapeutic target in cancer. / Trends Biochem Sci 2010, 35:427-33. CrossRef
    46. Curthoys NP, Watford M: Regulation of glutaminase activity and glutamine metabolism. / Annu Rev Nutr 1995, 15:133-59. CrossRef
    47. Wellen KE, Lu C, Mancuso A, Lemons J, Ryczko M, Dennis JW, Rabinowitz JD, Coller HA, Thompson CB: The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism. / Genes Dev 2010, 24:2784-799. CrossRef
    48. Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK: Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. / J Biol Chem 2008, 283:20621-0627. CrossRef
    49. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H: Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. / Nat Genet 2011, 43:869-74. CrossRef
    50. Ippolito JE, Merritt ME, B?ckhed F, Moulder KL, Mennerick S, Manchester JK, Gammon ST, Piwnica-Worms D, Gordon JI: Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers. / Proc Natl Acad of Sci U S A 2006, 103:12505-2510. CrossRef
    51. Namboodiri A, Peethambaran A, Mathew R, Sambhu PA, Hershfield J, Moffett JR, Madhavarao CN: Canavan disease and the role of N-acetylaspartate in myelin synthesis. / Mol Cell Endocrinol 2006, 252:216-23. CrossRef
    52. Fong MY, McDunn J, Kakar SS: Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. / PLoS One 2011, 6:e19963. CrossRef
    53. Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. / Nat Protoc 2007, 2:2692-703. CrossRef
    54. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC: Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. / Proc Nati Acad Sci USA 2006, 103:12511-2516. CrossRef
    55. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung YM: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. / Nature 2011, 472:57-3. CrossRef
    56. Cross AJ, Pollock RA, Bingham SA: Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. / Cancer Res 2003, 63:2358-360.
    57. Hu Z, Deng Y, Hu C, Deng P, Bu Q, Yan G, Zhou J, Shao X, Zhao J, Li Y: 1 H NMR-based metabonomic analysis of brain in rats of morphine dependence and withdrawal intervention. / Behav Brain Res 2012, 231:11-9. CrossRef
    58. Jansson J, Willing B, Lucio M, Fekete A, Dicksved J, Halfvarson J, Tysk C, Schmitt-Kopplin P: Metabolomics reveals metabolic biomarkers of Crohn's disease. / PLoS One 2009, 4:e6386. CrossRef
  • 作者单位:Liang Wang (1)
    Jie Chen (1)
    Longqi Chen (2)
    Pengchi Deng (3)
    Qian bu (1)
    Pu Xiang (1)
    Manli Li (1)
    Wenjie Lu (1)
    Youzhi Xu (1)
    Hongjun Lin (1)
    Tianming Wu (1)
    Huijuan Wang (1)
    Jing Hu (1)
    Xiaoni Shao (1)
    Xiaobo Cen (1)
    Ying-Lan Zhao (1)

    1. State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
    2. Department of thoracic surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
    3. Analytical & Testing Center, Sichuan University, Chengdu, 610041, China
  • ISSN:1476-4598
文摘
Background The biomarker identification of human esophageal cancer is critical for its early diagnosis and therapeutic approaches that will significantly improve patient survival. Specially, those that involves in progression of disease would be helpful to mechanism research. Methods In the present study, we investigated the distinguishing metabolites in human esophageal cancer tissues (n--9) and normal esophageal mucosae (n--6) using a 1H nuclear magnetic resonance (1H-NMR) based assay, which is a highly sensitive and non-destructive method for biomarker identification in biological systems. Principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least-squares-discriminant anlaysis (OPLS-DA) were applied to analyse 1H-NMR profiling data to identify potential biomarkers. Results The constructed OPLS-DA model achieved an excellent separation of the esophageal cancer tissues and normal mucosae. Excellent separation was obtained between the different stages of esophageal cancer tissues (stage II--8; stage III--5 and stage IV--6) and normal mucosae. A total of 45 metabolites were identified, and 12 of them were closely correlated with the stage of esophageal cancer. The downregulation of glucose, AMP and NAD, upregulation of formate indicated the large energy requirement due to accelerated cell proliferation in esophageal cancer. The increases in acetate, short-chain fatty acid and GABA in esophageal cancer tissue revealed the activation of fatty acids metabolism, which could satisfy the need for cellular membrane formation. Other modified metabolites were involved in choline metabolic pathway, including creatinine, creatine, DMG, DMA and TMA. These 12 metabolites, which are involved in energy, fatty acids and choline metabolism, may be associated with the progression of human esophageal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of esophageal cancer tissues, indicating the attribution of metabolites disturbance to the progression of esophageal cancer. The potential biomarkers provide a promising molecular diagnostic approach for clinical diagnosis of human esophageal cancer and a new direction for the mechanism study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700