Naturally Occurring Alkaline Amino Acids Function as Efficient Catalysts on Knoevenagel Condensation at Physiological pH: A Mechanistic Elucidation
详细信息    查看全文
  • 作者:Weina Li (1) (2)
    Sergey Fedosov (1)
    Tianwei Tan (2)
    Xuebing Xu (1)
    Zheng Guo (1)
  • 关键词:Knoevenagel condensation ; Amino acid ; Lipase ; Neutralized alkaline amino acid salt ; Physiological pH
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:173
  • 期:1
  • 页码:278-290
  • 全文大小:
  • 参考文献:1. Knoevenagel, E. (1897). / Berichte der Deutschen Chemischen Gesellschaft, 27, 2345-346. CrossRef
    2. Ogata, Y., & Tsuchida, M. (1959). / Journal of the American Chemical Society, 81(9), 2092-094. CrossRef
    3. Dong, X., Hui, Y., Xie, S., Zhang, P., Zhou, G., & Xie, Z. F. (2013). / RSC Advances, 3, 3222-226. CrossRef
    4. Zhang, X., Man Lai, E. S., Martin-Aranda, R., & Yeung, K. L. (2004). / Applied Catalysis A: General, 261(1), 109-18. CrossRef
    5. Wang, S., Ren, Z., Cao, W., & Tong, W. (2001). / Synthetic Communications, 31(5), 673-77. CrossRef
    6. Sugino, K., Oya, N., Yoshie, N., & Ogura, M. (2011). / Journal of the American Chemical Society, 133(50), 20030-0032. CrossRef
    7. Varadwaj, G. B. B., Rana, S., & Parida, K. (2013). / Dalton Transactions, 42(14), 5122-129. CrossRef
    8. Boucard, V. (2001). / Macromolecules, 34(13), 4308-313. CrossRef
    9. Murase, T., Nishijima, Y., & Fujita, M. (2011). / Journal of the American Chemical Society, 134(1), 162-64. CrossRef
    10. Phadtare, S., & Shankarling, G. (2012). / Environmental Chemistry Letters, 10(4), 363-68. CrossRef
    11. Lai, Y. F., Zheng, H., Chai, S. J., Zhang, P. F., & Chen, X. Z. (2010). / Green Chemistry, 12(11), 1917-918. CrossRef
    12. He, Y. H., Hu, Y., & Guan, Z. (2011). / Synthetic Communications, 41(11), 1617-628. CrossRef
    13. Rahmati, A., & Vakili, K. (2010). / Amino Acids, 39(3), 911-16. CrossRef
    14. Cardillo, G., Fabbroni, S., Gentilucci, L., Gianotti, M., & Tolomelli, A. (2003). / Synthetic Communications, 33(9), 1587-594. CrossRef
    15. Lee, A., Michrowska, A., Sulzer-Mosse, S., & List, B. (2011). / Angewandte Chemie International Edition, 50(7), 1707-710. CrossRef
    16. Venkatanarayana, M., & Dubey, P. K. (2012). / Synthetic Communications, 42(12), 1746-759. CrossRef
    17. Kapoor, M., & Gupta, M. N. (2012). / Process Biochemistry, 47(4), 555-69. CrossRef
    18. Mendes, A. A., Oliveira, P. C., & de Castro, H. F. (2012). / Journal of Molecular Catalysis B: Enzymatic, 78, 119-34. CrossRef
    19. Janero, D. R. (1990). / Free Radical Biology and Medicine, 9, 515-40. CrossRef
    20. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). / Free Radical Bio Med, 11, 81-28. CrossRef
    21. Otto, S., Bertoncin, F., & Engberts, J. B. F. N. (1996). / Journal of the American Chemical Society, 118(33), 7702-707. CrossRef
    22. Resch, V., Seidler, C., Chen, B.-S., Degeling, I., & Hanefeld, U. (2013). / European Journal of Organic Chemistry, 2013, 7697-704. CrossRef
    23. Griffith, E. C., & Vaida, V. (2013). / Journal of the American Chemical Society, 135(2), 710-16. CrossRef
    24. Busto, E., Gotor-Fernández, V., & Gotor, V. (2010). / Chemical Society Reviews, 39, 4504-523. CrossRef
    25. Humble, M. S., & Berglund, P. (2011). / European Journal of Organic Chemistry, 2011, 3391-401. CrossRef
    26. Wu, Q., Liu, B.-K., & Lin, X.-F. (2010). / Current Organic Chemistry, 14, 1966-988. CrossRef
    27. Chai, S. J., Lai, Y. F., Xu, J. C., Zheng, H., Zhu, Q., & Zhang, P. F. (2011). / Advanced Synthesis and Catalysis, 353(2-), 371-75. CrossRef
  • 作者单位:Weina Li (1) (2)
    Sergey Fedosov (1)
    Tianwei Tan (2)
    Xuebing Xu (1)
    Zheng Guo (1)

    1. Department of Engineering, Aarhus University, Aarhus, Denmark
    2. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
  • ISSN:1559-0291
文摘
To maintain biological functions, thousands of different reactions take place in human body at physiological pH (7.0) and mild conditions, which is associated with health and disease. Therefore, to examine the catalytic function of the intrinsically occurring molecules, such as amino acids at neutral pH, is of fundamental interests. Natural basic α-amino acid of l-lysine, l-arginine, and l-histidine neutralized to physiological pH as salts were investigated for their ability to catalyze Knoevenagel condensation of benzaldehyde and ethyl cyanoacetate. Compared with their free base forms, although neutralized alkaline amino acid salts reduced the catalytic activity markedly, they were still capable to perform an efficient catalysis at physiological pH as porcine pancreatic lipase (PPL), one of the best enzymes that catalyze Knoevenagel condensation. In agreement with the fact that the three basic amino acids were well neutralized, stronger basic amino acid Arg and Lys showed more obvious variation in NH bend peak from the FTIR spectroscopy study. Study of ethanol/water system and quantitative kinetic analysis suggested that the microenvironment in the vicinity of amino acid salts and protonability/deprotonability of the amine moiety may determine their catalytic activity and mechanism. The kinetic study of best approximation suggested that the random binding might be the most probable catalytic mechanism for the neutralized alkaline amino acid salt-catalyzed Knoevenagel condensation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700