Immobilizing Yarrowia lipolytica Lipase Lip2 via Improvement of Microspheres by Gelatin Modification
详细信息    查看全文
  • 作者:Rong Xie ; Caixia Cui ; Biqiang Chen ; Tianwei Tan
  • 关键词:Immobilization ; Lipase ; Gelatin ; Modification ; Microsphere
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:177
  • 期:3
  • 页码:771-779
  • 全文大小:602 KB
  • 参考文献:1.Fickers, P., Marty, A., & Nicaud, J. M. (2011). The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnology Advances, 29, 632-44.CrossRef
    2.Bai, W., Yang, Y., Tao, X., Chen, J., & Tan, T. (2011). Immobilization of lipase on aminopropyl-grafted mesoporous silica nanotubes for the resolution of (R, S)-1-phenylethanol. Journal of Molecular Catalysis B: Enzymatic, 76, 82-8.CrossRef
    3.Liu, Y., Wang, F., & Tan, T. (2009). Effects of alcohol and solvent on the performance of lipase from Candida sp. in enantioselective esterification of racemic ibuprofen. Journal of Molecular Catalysis B: Enzymatic, 56, 126-30.CrossRef
    4.Liu, W., Wang, F., Tan, T., & Chen, B. (2013). Lipase-catalyzed synthesis and characterization of polymers by cyclodextrin as support architecture. Carbohydrate Polymers, 92, 633-40.CrossRef
    5.Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28, 628-34.CrossRef
    6.Tielmann, P., Kierkels, H., Zonta, A., Ilie, A., & Reetz, M. T. (2014). Increasing the activity and enantioselectivity of lipases by sol–gel immobilization: further advancements of practical interest. Nanoscale, 6, 6220-228.CrossRef
    7.Ren, Y., Rivera, J. G., He, L., Kulkarni, H., Lee, D.-K., & Messersmith, P. B. (2011). Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnology, 11, 63.CrossRef
    8.Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, á., Torres, R., & Fernández-Lafuente, R. (2013). Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews, 42, 6290-307.CrossRef
    9.Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A. N., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14, 2433-462.CrossRef
    10.Liu, S., Lin, B., Yang, X., & Zhang, Q. (2007). Carbon-nanotube-enhanced direct electron-transfer reactivity of hemoglobin immobilized on polyurethane elastomer film. The Journal of Physical Chemistry. B, 111, 1182-188.CrossRef
    11.Silva, J., Macedo, G., Rodrigues, D., Giordano, R., & Gon?alves, L. (2012). Immobilization of Candida antarctica lipase B by covalent attachment on chitosan-based hydrogels using different support activation strategies. Biochemical Engineering Journal, 60, 16-4.CrossRef
    12.Manzano, M. F. G., & Igarzabal, C. I. A. (2011). Immobilization of lipase from Candida rugosa on synthesized hydrogel for hydrolysis reaction. Journal of Molecular Catalysis B: Enzymatic, 72, 28-5.CrossRef
    13.Ding, H., Shao, L., Liu, R., Xiao, Q., & Chen, J. (2005). Silica nanotubes for lysozyme immobilization. Journal of Colloid and Interface Science, 290, 102-06.CrossRef
    14.Mileti?, N., Rohandi, R., Vukovi?, Z., Nastasovi?, A., & Loos, K. (2009). Surface modification of macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. Reactive and Functional Polymers, 69, 68-5.CrossRef
    15.Rahman, A. U., Iqbal, M., Fu, D., Yaseen, M., Lv, Y., Omer, M., Garver, M., Yang, L., & Tan, T. (2012). Synthesis and characterization of reactive macroporous poly (glycidyl methacrylate-triallyl isocyanurate-ethylene glycol dimethacrylate) microspheres by suspension polymerization: effect of synthesis variables on surface area and porosity. Journal of Applied Polymer Science, 124, 915-26.CrossRef
    16.Ar?ca, M. Y., & Bayramo?lu, G. (2006). Invertase reversibly immobilized onto polyethylenimine-grafted poly (GMA–MMA) beads for sucrose hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 38, 131-38.CrossRef
    17.Du, T., Liu, B., Hou, X., Zhang, B., & Du, C. (2009). Covalent immobilization of glucose oxidase onto poly (St-GMA-NaSS) monodisperse microspheres via BSA as spacer arm. Applied Surface Science, 255, 7937-941.CrossRef
    18.Zhu, Y., Gao, C., He, T., & Shen, J. (2004). Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials, 25, 423-30.CrossRef
    19.Meyer, M., & Morgenstern, B. (2003). Characterization of gelatine and acid soluble collagen by size exclusion chromatography coupled with multi angle light scattering (SEC-MALS). Biomacromolecules, 4, 1727-732.CrossRef
    20.Tan, T., Zhang, M., Wang, B., Ying, C., & Deng, L. (2003). Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochemistry, 39, 459-65.CrossRef
    21.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-54.CrossRef
  • 作者单位:Rong Xie (1)
    Caixia Cui (1)
    Biqiang Chen (1)
    Tianwei Tan (1)

    1. National Energy R&D Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Biology Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
The purpose of this study was to investigate the feasibility of immobilizing Yarrowia lipolytica lipase lip2 on epoxy microspheres with or without gelatin modifications. The activity of lipase immobilized on gelatin-modified supports was twofold higher than those immobilized on native supports. There was no significant difference in the Michaelis-Menten constant (K M ) between the two immobilized lipases. However, lipase immobilized on gelatin modified supports showed an approximately fourfold higher V max than lipase immobilized on native supports. Lipase immobilization on the gelatin-modified support exhibited a significantly improved operational stability in an esterification system. After it was reused for a total of 35 batches, the ester conversion of lipase immobilized on gelatin-modified and native microspheres was 83 and 60 %, respectively. Furthermore, the immobilized lipase could be stored at 4 °C for 12 months without any loss of activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700