Strategy to Overcome Effect of Raw Materials on Enzymatic Process of Biodiesel from Non-edible Oils Using Candida sp. 99᾿25 Lipase
详细信息    查看全文
  • 作者:Kaili Nie ; Fang Wang ; Tianwei Tan ; Luo Liu
  • 关键词:Acid value ; Biodiesel ; Lipase ; Non ; edible oils ; Raw materials
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2015
  • 出版时间:November 2015
  • 年:2015
  • 卷:177
  • 期:5
  • 页码:1176-1185
  • 全文大小:829 KB
  • 参考文献:1.Nie, K., Xie, F., Wangm, F., & Tan, T. (2006). Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 43(1), 142–147.CrossRef
    2.Lam, M. K., Tan, K. T., Lee, K. T., & Mohamed, A. R. (2009). Malaysian palm oil: surviving the food versus fuel dispute for a sustainable future. Renewable and Sustainable Energy Reviews, 13(6–7), 1456–1464.CrossRef
    3.Vasudevan, P. T., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology & Biotechnology, 35(5), 421–430.CrossRef
    4.Ghadge, S. V., & Raheman, H. (2005). Biodiesel production from mahua Madhuca indica oil having high free fatty acids. Biomass and Bioenergy, 28(6), 601–605.CrossRef
    5.Wang, Y., Ou, S., Liu, P., Xue, F., & Tang, S. (2006). Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252(1), 107–112.CrossRef
    6.Felizardo, P., Neiva Correia, M. J., Raposo, I., Mendes, J. F., Berkemeier, R., & Bordado, J. M. (2006). Production of biodiesel from waste frying oils. Waste Management, 26(5), 487–494.CrossRef
    7.Canakci, M., & Van Gerpen, J. (1999). Biodiesel production via acid catalysis. Transactions of the ASAE-American Society of Agricultural Engineers, 42(5), 1203–1210.CrossRef
    8.Tan, T., Shang, F., & Zhang, X. (2010). Current development of biorefinery in China. Biotechnology Advances, 28(5), 543–555.CrossRef
    9.Staubmann, R., Ncube, I., Gübitz, G., Steiner, W., & Read, J. (1999). Esterase and lipase activity in Jatropha curcas L. seeds. Journal of Biotechnology, 75(2), 117–126.CrossRef
    10.Hass, M. J. (2005). Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soapstock. Fuel Processing Technology, 86(10), 1087–1096.CrossRef
    11.Watanabe, Y., Shimada, Y., Sugihara, A., & Tominaga, Y. (2001). Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. Journal of American Oil Chemistry Society, 78(7), 703–707.CrossRef
    12.Orcçaire, O., Buisson, P., & Pierre, A. C. (2006). Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. Journal of Molecular Catalysis B: Enzymatic, 42(3), 106–113.CrossRef
    13.Liu, S., Nie, K., Zhang, X., Wang, M., Deng, L., Ye, X., Wang, F., & Tan, T. (2014). Kinetic study on lipase-catalyzed biodiesel production from waste cooking oil. Journal of Molecular Catalysis B: Enzymatic, 99, 43–50.CrossRef
    14.Tan, T., Nie, K., & Wang, F. (2006). Production of biodiesel by immobilized Candida sp. lipase at high water content. Applied Biochemistry and Biotechnology, 128(2), 109–116.CrossRef
    15.Xue, F., Gao, B., Zhu, Y., Zhang, X., Feng, W., & Tan, T. (2010). Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresource Technology, 101(15), 6092–6095.CrossRef
  • 作者单位:Kaili Nie (1) (2)
    Fang Wang (1) (3)
    Tianwei Tan (1)
    Luo Liu (1)

    1. Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
    2. Amoy-BUCT Industrial Bio-technovation Institute, Amoy, 361022, People’s Republic of China
    3. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
Non-edible oils are preferred raw materials for biodiesel production. However, the properties of raw materials significantly affect the synthesis process, leading to difficulties to design one process suitable for any kind of raw material. In this study, the composition of five typical non-edible oils was analyzed. The major difference was the content of free fatty acids, reflected from their acid values. The influence of different oils was investigated by using lipase from Candida sp. 99–125. At low lipase dosage and low water content, the conversion was found proportional to the acid value. However, by increasing the water content or lipase dosage, we observed that the conversions for all kinds of oils used in this study could exceed 80 %. Time course analysis indicates that the lipase used in this study catalyzed hydrolysis followed by esterification, rather than direct transesterification. Accumulation of free fatty acids at the very beginning was necessary. A high water content facilitated the hydrolysis of oils with low acid value. This lipase showed capability to transform all the oils by controlling the water content.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700