Variation in tolerance to common marine pollutants among different populations in two species of the marine copepod Tigriopus
详细信息    查看全文
  • 作者:Patrick Y. Sun ; Helen B. Foley…
  • 关键词:Copper ; Tributyltin ; Tigriopus japonicus ; Tigriopus californicus ; Bioassay
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:October 2015
  • 年:2015
  • 卷:22
  • 期:20
  • 页码:16143-16152
  • 全文大小:835 KB
  • 参考文献:Abele D, Heise K, P枚rtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831鈥?841
    Agra AR, Guilhermino L, Soares AMVM, Barata C (2009) Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage. Environ Toxicol Chem 29:939鈥?46CrossRef
    Berthet B, Leung KMY, Amiard-Triquet C (2011) Inter- and intraspecific variability of tolerance: implications for bioassays and biomonitoring. In: Amiard-Triquet C, Rainbow PS, Romeo M (eds) Tolerance to environmental contaminants. CRC Press, Boca Raton, pp 189鈥?16
    Boone AN, Vijayan MM (2002) Constitutive heat shock protein 70 (HSC70) expression in rainbow trout hepatocytes: effect of heat shock and heavy metal exposure. Comp Biochem Physiol C Toxicol Pharmacol 132:223鈥?33CrossRef
    Burton ED, Phillips IR, Hawker DW (2005) In-situ partitioning of butyltin compounds in estuarine sediments. Chemosphere 59:585鈥?92CrossRef
    Champ MA, Seligman PF (eds) (1996) Organotin: environmental fate and effects. Chapman & Hall, London, 629 p
    D铆ez S, 脕balos M, Bayona JM (2002) Organotin contamination in sediments from the Western Mediterranean enclosures following 10 years of TBT regulation. Water Res 36:905鈥?18CrossRef
    Edmands S (2001) Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol Ecol 10:1743鈥?750CrossRef
    Edmands S, Harrison JS (2003) Molecular and quantitative trait variation within and among populations of the intertidal copepod Tigriopus californicus. Evolution 57:2277鈥?285CrossRef
    Gould SJ, Vrba ES (1982) Exaptation; a missing term in the science of form. Paleobiology 8:4鈥?5
    Heintz RA, Rice SD, Wertheimer AC, Bradshaw RF, Thrower FP, Joyce JE, Short JW (2000) Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar Ecol Prog Ser 208:205鈥?16CrossRef
    Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373鈥?04. doi:10.鈥?146/鈥媋nnurev.鈥媏colsys.鈥?7.鈥?91305.鈥?10149 CrossRef
    Ishihara Y, Kawami T, Ishida A, Yamazaki T (2012) Tributyltin induces oxidative stress and neuronal injury by inhibiting glutathione S-transferase in rat organotypic hippocampal slice cultures. Neurochem Int 60:782鈥?90CrossRef
    Katika MR, Hendriksen PJM, van Loveren H, Peijnenburg A (2011) Exposure of Jurkat cells to bis (tri-n-butyltin) oxide (TBTO) induces transcriptomics changes indicative for ER- and oxidative stress, T cell activation and apoptosis. Toxicol Appl Pharmacol 254:311鈥?22CrossRef
    Kelly MW, Sanford E, Grosberg RK (2012) Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc R Soc B 279(1727):349鈥?56. doi:10.鈥?098/鈥媟spb.鈥?011.鈥?542 CrossRef
    Ki J-S, Lee K-W, Park HG, Chullasorn S, Dahms H-U, Lee J-S (2009) Phylogeography of the copepod Tigriopus japonicus along the Northwest Pacific rim. J Plankton Res 31:209鈥?21CrossRef
    Kwok KWH, Leung KMY (2005) Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Mar Pollut Bull 51:830鈥?37CrossRef
    Kwok KWH, Leung KMY, Bao VWW, Lee J-S (2008) Copper toxicity in the marine copepod Tigriopus japonicus: low variability and high reproducibility of repeated acute and life-cycle tests. Mar Pollut Bull 57:632鈥?36CrossRef
    Kwok KWH, Grist EPM, Leung KMY (2009) Acclimation effect and fitness cost of copper resistance in the marine copepod Tigriopus japonicus. Ecotoxicol Environ Saf 72:358鈥?64CrossRef
    Lukkari T, Taavitsainen M, Soimasuo M, Oikari A, Haimi J (2004) Biomarker responses of the earthworm Aporrectodea tuberculata to copper and zinc exposure: differences between populations with and without earlier metal exposure. Environ Pollut 129:377鈥?86. doi:10.鈥?016/鈥媕.鈥媏nvpol.鈥?003.鈥?2.鈥?08 CrossRef
    Martins N, Lopes I, Harper RM, Ross P, Ribeiro R (2007) Differential resistance to copper and mine drainage in Daphnia longispina: relationship with allozyme genotypes. Environ Toxicol Chem 26:1904鈥?909. doi:10.鈥?897/鈥?6-111R.鈥? CrossRef
    Mouneyrac C, Leung PTY, Leung KMY (2011) Cost of tolerance. In: Amiard-Triquet C, Rainbow PS, Romeo M (eds) Tolerance to environmental contaminants. CRC Press, Boca Raton, pp 265鈥?97CrossRef
    Peterson DL, Kubow KB, Connolly MJ, Kaplan LR, Wetkowski MM, Leong W, Phillips BC, Edmands S (2013) Reproductive and phylogenetic divergence of tidepool copepod populations across a narrow geographical boundary in Baja California. J Biogeogr 40:1664鈥?675. doi:10.鈥?111/鈥媕bi.鈥?2107 CrossRef
    Philips DJH, Rainbow PS (1993) Biomonitoring of trace aquatic contaminants. Springer, London, 371 pCrossRef
    Qiu J-W, Qian PY (1999) Tolerance of the barnacle Balanus amphitrite amphitrite to salinity and temperature stress: effects of previous experience. Mar Ecol Prog Ser 188:123鈥?32
    R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://鈥媤ww.鈥婻-project.鈥媜rg/鈥?/span>
    Raisuddin S, Kwok KWH, Leung KMY, Schlenk D, Lee J-S (2007) The copepod Tigriopus: a promising marine model organism for ecotoxicology and environmental genomics. Aquat Toxicol 83:161鈥?73CrossRef
    Rhee J-S, Raisuddin S, Lee K-W, Seo JS, Ki J-S, Kim I-C, Park HG, Lee J-S (2009) Heat shock protein (Hsp) gene responses of the intertidal copepod Tigriopus japonicus to environmental toxicants. Comp Biochem Physiol C Toxicol Pharmacol 149:104鈥?12CrossRef
    Rhee J-S, Yu IT, Kim B-M, Jeong C-B, Lee K-W, Kim M-J, Lee S-J, Park GS, Lee J-S (2013) Copper induces apoptotic cell death through reactive oxygen species-triggered oxidative stress in the intertidal copepod Tigriopus japonicus. Aquat Toxicol 132鈥?33:182鈥?89CrossRef
    Santos DM, dos Sant鈥橝nna BS, Sandron DC, Cardoso de Souza S, Cristale J, de Marchi MRR, Turra A (2010) Occurrence and behavior of butyltins in intertidal and shallow subtidal surface sediments of an estuarine beach under different sampling conditions. Estuar Coast Shelf Sci 88:322鈥?28CrossRef
    Sarabia R, Del RJ, Varo I, D铆az-Mayans J, Torreblanca A (2002) Comparing the acute response to cadmium toxicity of nauplii from different populations of Artemia. Environ Toxicol Chem 21:437鈥?44CrossRef
    Schoville SD, Barreto FS, Moy GW, Wolff A, Burton RS (2012) Investigating the molecular basis of local adaptation to thermal stress: population differences in gene expression across the transcriptome of the copepod Tigriopus californicus. BMC Evol Biol 12:170CrossRef
    Smail EA, Webb EA, Franks RP, Bruland KW, Sanudo-Wilhelmy SA (2012) Status of metal contamination in surface waters of the coastal ocean off Los Angeles, California since the implementation of the Clean Water Act. Environ Sci Technol 46:4304鈥?311CrossRef
    Somero GN (2010) The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine 鈥渨inners鈥?and 鈥渓osers鈥? J Exp Biol 213:912鈥?20. doi:10.鈥?242/鈥媕eb.鈥?37473 CrossRef
    Sun PY, Foley HB, Handschumacher L, Suzuki A, Karamanukyan T, Edmands S (2014) Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus. Chemosphere 112:465鈥?71CrossRef
    Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York. ISBN 0-387-95457-0
    Wang D, Lin W, Yang X, Zhai W, Dai M, Chen AC-T (2012) Occurrences of dissolved trace metals (Cu, Cd, and Mn) in the Pearl River Estuary (China), a large river-groundwater-estuary system. Cont Shelf Res 50鈥?1:54鈥?3CrossRef
    Weis JS (2014) Delayed behavioral effects of early life toxicant exposures in aquatic biota. Toxics 2(2):165鈥?87
    Wen L-S, Jiann K-T, Santschi PH (2006) Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Mar Chem 101:104鈥?29CrossRef
    Wheeler MW, Park RM, Bailer AJ (2006) Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ Toxicol Chem 25:1441鈥?444CrossRef
    Willett CS (2010) Potential fitness trade-offs for thermal tolerance in the intertidal copepod Tigriopus californicus. Evolution 64:2521鈥?534CrossRef
    Winner RW, Farrell MP (1976) Acute and Chronic Toxicity of Copper to Four Species of Daphnia. J Fish Res Bd Can 33:1685鈥?691. doi:10.鈥?139/鈥媐76-215
  • 作者单位:Patrick Y. Sun (1)
    Helen B. Foley (1)
    Vivien W. W. Bao (2)
    Kenneth M. Y. Leung (2) (3)
    Suzanne Edmands (1)

    1. Department of Biological Science and Wrigley Institute for Environmental Studies, University of Southern California, 3616 Trousdale PKWY STE 107, Los Angeles, CA, 90089, USA
    2. The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
    3. State Key Laboratory in Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Geographical variation in chemical tolerance within a species can significantly influence results of whole animal bioassays, yet a literature survey showed that the majority of articles using bioassays did not provide detail on the original field collection site of their test specimens confounding the ability for accurate replication and comparison of results. Biological variation as a result of population-specific tolerance, if not addressed, can be misinterpreted as experimental error. Our studies of two marine copepod species, Tigriopus japonicus and Tigriopus californicus, found significant intra- and inter-specific variation in tolerance to copper and tributyltin. Because both species tolerate copper concentrations orders of magnitude higher than those found in coastal waters, difference in copper tolerance may be a by-product of adaptation to other stressors such as high temperature. Controlling for inter-population tolerance variation will greatly strengthen the application of bioassays in chemical toxicity tests. Keywords Copper Tributyltin Tigriopus japonicus Tigriopus californicus Bioassay

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700