Identification of a novel tillering dwarf mutant and fine mapping of the TDDL(T) gene in rice (Oryza sativa L.)
详细信息    查看全文
  • 作者:ZhenYu Gao (1) (2)
    XiaoHui Liu (2)
    LongBiao Guo (1)
    Jian Liu (1)
    GuoJun Dong (1)
    Jiang Hu (1)
    Bin Han (2)
    Qian Qian (1)
  • 关键词:rice (Oryza sativa L.) ; tillering dwarf ; plant architecture ; TDDL(T) gene ; fine mapping ; GA
  • 刊名:Chinese Science Bulletin
  • 出版年:2009
  • 出版时间:June 2009
  • 年:2009
  • 卷:54
  • 期:12
  • 页码:2062-2068
  • 全文大小:864KB
  • 参考文献:1. Kinoshita T. Report of the committee on gene symbolization, nomenclature and linkage groups. Rice Genet News, 1995, 12: 9-15
    2. Ward S P, Leyser O. Shoot branching. Curr Opin Plant Biol, 2004, 7: 73-8 CrossRef
    3. Ishikawa S, Maekawa M, Arite T, et al. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46: 79-6 CrossRef
    4. Arite T, Iwata H, Ohshima K, et al. / DWARF10, an / RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51: 1019-029 CrossRef
    5. Zou J H, Zhang S Y, Zhang W P, et al. The rice / HIGH-TILLERING DWARF1 encoding an ortholog of / Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687-96 CrossRef
    6. Leyser O. Regulation of shoot branching by auxin. Trends Plant Sci, 2003, 8: 541-45 CrossRef
    7. Sasaki A, Ashikari M, Ueguchi-Tanaka M, et al. Green revolution: A mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-02 CrossRef
    8. Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. / GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-98 CrossRef
    9. Takeno K, Pharis R P. Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: An auxin-mediated phenomenon. Plant Cell Physiol, 1982, 23: 1275-281
    10. Murakami H. A new rice seedling test for gibberellins, microdrop method and its use for testing extracts of rice and morning glory. Bot Mag Tokyo, 1968, 81: 334-43
    11. Lanahan M B, Ho T H. Slender barley: A constitutive gibberellin-response mutant. Planta, 1988, 175: 107-14 CrossRef
    12. Fujioka S, Noguchi T, Takatsuto S, et al. Activity of brassinosteroids in the dwarf rice lamina inclination bioassay. Phytochemistry, 1998, 49: 1841-848 CrossRef
    13. Qian Q, Li Y H, Zeng D, et al. Isolation and genetic characterization of a fragile plant mutant rice ( / Oryza sativa L.). Chinese Sci Bull, 2001, 46: 2082-085 CrossRef
    14. Akagi H, Yokozeki Y, Inagaki A, et al. Micron, a microsatellitetargeting transposable element in the rice genome. Mol Genet Genomics, 2001, 266: 471-80 CrossRef
    15. Jiang H, Guo L B, Xue D W, et al. Genetic analysis and genemapping of two reduced-culm-number mutants in rice. J Integr Plant Biol, 2006, 48: 341-47 CrossRef
    16. Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice. Theor Appl Genet, 2000, 100: 697-12 CrossRef
    17. McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice ( / Oryza sativa L.). DNA Res, 2002, 9(Suppl): 257-79 CrossRef
    18. Lander E S, Green P, Abrahamson J, et al. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-81 CrossRef
    19. Takeda K. Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym, 1977, 16: 1-8
    20. Mitsunaga S, Tashiro T, Yamaguchi J. Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet, 1994, 87: 705-12 CrossRef
    21. Feng Q, Zhang Y, Hao P, et al. Sequence and analysis of rice chromosome 4. Nature, 2002, 420: 316-20 CrossRef
    22. Takeda T, Suwa Y, Kitano H, et al. The / OsTB1 gene negatively regulates lateral branching in rice. Plant J, 2003, 33: 513-20 CrossRef
    23. Hubbard L, McSterrn P, Doebley J, et al. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 2002, 162: 1927-935
    24. Li X Y, Qian Q, Fu Z M, et al. Control of tillering in rice. Nature, 2003, 422: 618-21 CrossRef
    25. Wang Y S, Wang J, Duan J Y, et al. Isolation and genetic research of a dwarf tillering mutant rice (in Chinese). Acta Agro Sin, 2002, 28: 235-39
    26. Reintanz B, Lehnen M, Reichelt M, et al. / bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell, 2001, 13: 351-67 CrossRef
    27. Monna L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd-1: rice “green revolution gene-encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9: 11-6 CrossRef
    28. Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455: 189-94 CrossRef
    29. Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455: 195-00 CrossRef
  • 作者单位:ZhenYu Gao (1) (2)
    XiaoHui Liu (2)
    LongBiao Guo (1)
    Jian Liu (1)
    GuoJun Dong (1)
    Jiang Hu (1)
    Bin Han (2)
    Qian Qian (1)

    1. State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
    2. National Center for Gene Research, Chinese Academy of Sciences, Shanghai, 200233, China
  • ISSN:1861-9541
文摘
Rice plant architecture is an important agronomic trait that affects the grain yield. To understand the molecular mechanism that controls plant architecture, a tillering dwarf mutant with darker-green leaves derived from an indica cultivar IR64 treated with EMS is characterized. The mutant, designated as tddl(t), is nonallelic to the known tillering dwarf mutants. It is controlled by one recessive nuclear gene, TDDL(T), and grouped into the dn-type dwarfism according to Takeda’s definition. The dwarfism of the mutant is independent of gibberellic acid based on the analyses of two GA-mediated processes. The independence of brassinosteroid (BR) and naphthal-3-acetic acid (NAA) of the tddl(t) mutant, together with the decreased size of parenchyma cells in the vascular bundle, indicates that the TDDL(T) gene might participate in another hormone pathway. TDDL(T) is fine mapped within an 85.51 kb region on the long arm of rice chromosome 4, where 20 ORFs are predicted by RiceGAAS (http://ricegaas.dna.affrc. go.jp/rgadb/). Further cloning of TDDL(T) will benefit both marker assisted selection (MAS) of plant architecture and dissection of the molecular mechanism underlying tillering dwarf in rice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700