Ultra-fast speech comprehension in blind subjects engages primary visual cortex, fusiform gyrus, and pulvinar -a functional magnetic resonance imaging (fMRI) study
详细信息    查看全文
  • 作者:Susanne Dietrich (1)
    Ingo Hertrich (1)
    Hermann Ackermann (1)
  • 关键词:Speech perception ; Compressed speech ; Late ; and early ; blind subjects ; Cross ; modal plasticity ; Timing
  • 刊名:BMC Neuroscience
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:1009KB
  • 参考文献:1. Hollins M: Perceptual abilities of blind people. In / Understanding Blindness: An Interrogative Approach.. Edited by: Hollins M. Hillsdale, NJ: Lawrence Erlbaum Associates; 1989.
    2. Niemeyer W, Starlinger I: Do blind hear better? Investigations on auditory processing in congenital early acquired blindness. II. Central functions. / Audiology 1981, 20:510-15. CrossRef
    3. R?der B, R?sler F, Hennighausen E, N?cker F: Event-related potentials during auditory and somatosensory discrimination in sighted and blind human subjects. / Cogn Brain Res 1996, 4:77-3.
    4. R?der B, Teder-Salejarvi W, Sterr A, R?sler F, Hillyard SA, Neville HJ: Improved auditory spatial tuning in blind humans. / Nature 1999, 400:162-66. CrossRef
    5. Gougoux F, Lepore F, Lassonde M, Voss P, Zatorre RJ, Belin P: Pitch discrimination in the early blind. / Nature 2004, 430:309. CrossRef
    6. Bull R, Rathborn H, Clifford BR: The voice-recognition accuracy of blind listeners. / Perception 1983, 12:223-26. CrossRef
    7. Büchel C, Price C, Frackowiak RSJ, Friston K: Different activation patterns in the visual cortex of late and congenitally blind subjects. / Brain 1998, 121:409-19. CrossRef
    8. Gizewski ER, Gasser T, de Greiff A, Boehm A, Forsting M: Cross-modal plasticity for sensory and motor activation patterns in blind subjects. / NeuroImage 2003, 19:968-75. CrossRef
    9. Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M: Neural networks for Braille reading by the blind. / Brain 1998, 121:1213-229. CrossRef
    10. Sadato N: How the blind “see-Braille: Lessons from functional magnetic resonance imaging. / Neuroscientist 2005, 11:577-82. CrossRef
    11. Burton H, McLaren DG, Sinclair RJ: Reading embossed capital letters: An fMRI study in blind and sighted individuals. / Hum Brain Mapp 2006, 27:325-39. CrossRef
    12. Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, Tranduy D, Veraart C, De Volder AG: Auditory motion perception activates visual motion areas in early blind subjects. / NeuroImage 2006, 31:279-85. CrossRef
    13. R?der B, Stock O, Bien S, Neville H, R?sler F: Speech processing activates visual cortex in congenitally blind humans. / Eur J Neurosci 2002, 16:930-36. CrossRef
    14. Amedi A, Raz N, Pianka P, Malach R, Zohary E: Early ‘visual-cortex activation correlates with superior verbal memory performance in the blind. / Nat Neurosci 2003, 6:758-66. CrossRef
    15. Lambert S, Sampaio E, Mauss Y, Schreiber C: Blindness and brain plasticity: Contribution of mental imagery? An fMRI study. / Cogn Brain Res 2004, 20:1-1. CrossRef
    16. Raz N, Amedi A, Zohary E: V1 activation in congenitally blind humans is associated with episodic retrieval. / Cereb Cortex 2005, 15:1459-468. CrossRef
    17. Moos A, Trouvain J: Comprehension of ultra-fast speech -blind vs. “normally hearing-persons. In / Proceedings of the 16th International Congress of Phonetic Sciences Volume 1. Edited by: Trouvain J, Barry WJ. Saarbrücken: University of Saarbrücken; 2007:677-80.
    18. Nishimoto T, Sako S, Sagayama S, Ohshima K, Oda K, Watanabe T: Effect of learning on listening to ultra-fast synthesized speech. / IEEE Conf Proc Med Biol Soc 2006, 1:5691-694.
    19. Hertrich I, Dietrich S, Moos A, Trouvain J, Ackermann H: Enhanced speech perception capabilities in a blind listener are associated with activation of fusiform gyrus and primary visual cortex. / Neurocase 2009, 15:163-70. CrossRef
    20. Cattaneo Z, Vecchi T: / Blind Vision. The Neuroscience of Visual Impairment. Cambridge, MA: MIT Press; 2011.
    21. Cohen LG, Weeks RA, Sadato N, Celnik P, Ishii K, Hallett M: Period of succeptibility for cross-modal plasticity in the blind. / Ann Neurol 1999, 45:451-60. CrossRef
    22. Scott SK, Blank CC, Rosen S, Wise RJS: Identification of a pathway for intelligible speech in the left temporal lobe. / Brain 2000, 123:2400-406. CrossRef
    23. Poldrack RA, Temple E, Protopapas A, Nagarajan S, Tallal P, Merzenich M, Gabrieli JDE: Relations between the neural bases of dynamic auditory processing and phonological processing : Evidence from fMRI. / J Cogn Neurosci 2001, 13:687-97. CrossRef
    24. Mathiak K, Hertrich I, Grodd W, Ackermann H: Cerebellum and Speech Perception: A Functional Magnetic Resonance Imaging Study. / J Cogn Neurosci 2002, 14:902-12. CrossRef
    25. Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI: Dissociation of object and patial visual processing pathways in human extrastriate cortex. / Proc Natl Acad Sci U S A 1991, 88:1621-625. CrossRef
    26. Cone NE, Burman DD, Bitan T, Bolger DJ, Booth JR: Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. / NeuroImage 2008, 41:623-35. CrossRef
    27. McCandliss BD, Cohen L, Dehaene S: The visual word form area: Expertise for reading in the fusiform gyrus. / Trends Cogn Sci 2003, 7:293-99. CrossRef
    28. Vigneau M, Jobard G, Mazoyer B, Tzourio-Mazoyer N: Word and non-word reading: What role for the Visual Word Form Area? / NeuroImage 2005, 27:694-05. CrossRef
    29. Cao F, Bitan T, Booth JR: Effective brain connectivity in children with reading difficulties during phonological processing. / Brain Lang 2008, 107:91-01. CrossRef
    30. Burton MW, Small SL, Blumstein SE: The role of segmentation in phonological processing: An fMRI investigation. / J Cogn Neurosci 2000, 12:679-90. CrossRef
    31. Rauschecker JP, Scott SK: Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing. / Nat Neurosci 2009, 12:718-24. CrossRef
    32. Liebenthal E, Binder JR, Spitzer SM, Possing ET, Medler DA: Neural Substrates of Phonemic Perception. / Cereb Cortex 2005, 15:1621-631. CrossRef
    33. Hickok G: The functional neuroanatomy of language. / Phys Life Rev 2009, 6:121-43. CrossRef
    34. Hickok G, Poeppel D: Towards a functional neuroanatomy of speech perception. / Trends Cogn Sci 2000, 4:131-38. CrossRef
    35. Büchel C: Cortical hierarchy turned on its head. / Nat Neurosci 2003, 6:657-58. CrossRef
    36. Sadato N, Okado T, Honda M, Yonekura Y: Critical period for cross-modal plasticity in blind humans: A functional MRI study. / NeuroImage 2002, 16:389-00. CrossRef
    37. Wan CY, Wood AG, Reutens DC, Wilson SJ: Early but not late-blindness leads to enhanced auditory perception. / Neuropsychologia 2010, 48:344-48. CrossRef
    38. Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F: A functional neuroimaging study of sound localization: Visual cortex activity predicts performance in early-blind individuals. / PLoS Biol 2005, 3:27. CrossRef
    39. Stilla R, Hanna R, Hu X, Mariola E, Deshpande G, Sathian K: Neural processing underlying tactile microspatial discrimination in the blind: a functional magnetic resonance imaging study. / J Vis 2008, 8:1-9. CrossRef
    40. Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME: Adaptive changes in early and late blind: An fMRI study of Braille reading. / J Neurophysiol 2002, 87:589-07.
    41. Amedi A, Floel A, Knecht S, Zohary E, Cohen LG: Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. / Nat Neurosci 2004, 7:1266-270. CrossRef
    42. Burton H, Snyder AZ, Diamond JB, Raichle ME: Adaptive changes in early and late blind: An fMRI study of verb generation to heard nouns. / J Neurophysiol 2002, 88:3359-371. CrossRef
    43. Liberman AM: / Special Code. Cambridge, MA: MIT Press; 1996.
    44. Hickok G, Poeppel D: The cortical organization of speech processing. / Nat Rev Neurosci 2007, 8:393-02. CrossRef
    45. Zaehle T, Geiser E, Alter K, J?ncke L, Meyer M: Segmental processing in the human auditory dorsal stream. / Brain Res 2008, 1220:179-90. CrossRef
    46. Fletcher J: The prosody of speech: Timing and rhythm. In / The Handbook of Phonetic Sciences, 2nd edition. Edited by: Hardcastle WJ, Laver J, Gibbon FE. Oxford: Wiley-Blackwell; 2010:523-02.
    47. Beckman ME, Venditti JJ: Tone and intonation. In / The Handbook of Phonetic Sciences, 2nd edition. Edited by: Hardcastle WJ, Laver J, Gibbon FE. Oxford: Wiley-Blackwell; 2010:603-52. CrossRef
    48. Poeppel D: The analysis of speech in different temporal integration windows: Cerebral lateralization as ‘asymmetric sampling in time- / Speech Commun 2003, 41:245-55. CrossRef
    49. Hertrich I, Dietrich S, Trouvain J, Moos A, Ackermann H: Magnetic brain activity phase-locked to the envelope, the syllable onsets, and the fundamental frequency of a perceived speech signal. / Psychophysiology 2012, 49:322-34. CrossRef
    50. Abrams DA, Nicol T, Zecker S, Kraus NJ: Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. / J Neurosci 2008, 28:3958-965. CrossRef
    51. Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM: Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. / Proc Natl Acad Sci U S A 2001, 98:13367-3372. CrossRef
    52. Stevens AA, Snodgrass M, Schwartz D, Weaver K: Preparatory activity in occipital cortex in early blind humans predicts auditory perceptual performance. / J Neurosci 2007, 27:10734-0741. CrossRef
    53. Stevens AA, Weaver K: Auditory perceptual consolidation in early-onset blindness. / Neuropsychologia 2005, 43:1901-910. CrossRef
    54. Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, Ackermann H: fMRI reveals two distinct cerebral networks subserving speech motor control. / Neurology 2005, 64:700-06. CrossRef
    55. Brendel B, Hertrich I, Erb M, Lindner A, Riecker A, Grodd W, Ackermann H: The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: An fMRI study. / NeuroImage 2010, 50:1219-230. CrossRef
    56. Ziegler W, Kilian B, Deger K: The role of the left mesial frontal cortex in fluent speech: Evidence from a case of left supplementary motor area hemorrhage. / Neuropsychologia 1997, 35:1197-208. CrossRef
    57. Paz R, Natan C, Boraud T, Bergman H, Vaadia E: Emerging patterns of neuronal responses in supplementary and primary motor areas during sensorimotor adaptation. / J Neurosci 2005, 25:10941-0951. CrossRef
    58. Rubia K, Smith A: The neural correlates of cognitive time management: A review. / Acta Neurobiol Exp 2004, 64:329-40.
    59. Chung GH, Han YM, Jeong SH, Jack CR: Functional heterogeneity of the supplementary motor area. / Am J Neuroradiol 2005, 26:1819-823.
    60. Geiser E, Zaehle T, J?ncke L, Meyer M: The neural correlate of speech rhythm as evidenced by metrical speech processing. / J Cogn Neurosci 2008, 20:541-52. CrossRef
    61. Smith A, Taylor E, Lidzba K, Rubia K: A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. / NeuroImage 2003, 20:344-50. CrossRef
    62. Schirmer A, Alter K, Kotz SA, Friederici AD: Lateralization of prosody during language production: A lesion study. / Brain Lang 2001, 76:1-7. CrossRef
    63. Schirmer A: Timing speech: A review of lesion and neuroimaging findings. / Cogn Brain Res 2004, 21:269-87. CrossRef
    64. Baddeley A: Working memory and language: An overview. / J Commun Disord 2003, 36:189-08. CrossRef
    65. Lyon DC, Jain N, Kaas JH: The visual pulvinar in tree shrews II. Projections of four nuclei to areas of visual cortex. / J Comp Neurol 2003, 467:607-27. CrossRef
    66. Casanove C: The visual functions of the pulvinar. In / The Visual Neurosciences. Volume 1. Edited by: Chalupa LM, Werner JS. Cambridge, MA: MIT Press; 2004:592-08.
    67. Bernstein LE, Auer ET, Jr Moore JK: Audiovisual speech binding: Convergence or association? In / The Handbook of Multisensory Processes. Edited by: Calvert G, Spence C, Stein BE. Cambridge, MA: MIT Press; 2004:203-23.
    68. Burr D, Alais D: Combining visual and auditory information. / Prog Brain Res 2006, 155:243-58. CrossRef
    69. Foxe J, Schr?der CE: The case for feedforward multisensory convergence during early cortical processing. / Neuroreport 2005, 16:419-23. CrossRef
    70. Schr?der CE, Foxe J: Multisensory contributions to low-level, unisensory processing. / Curr Opin Neurobiol 2005, 15:454-58. CrossRef
    71. Schr?der CE, Smiley J, Fu KG, McGinnis T, O’Connel MN, Hackett TA: Anatomical mechanisms and functional implications of multisensory convergence in early cortical processing. / Int J Psychophysiol 2003, 50:5-7. CrossRef
    72. Bolognini N, Senna I, Maravita A, Pascual-Leone A, Merabet LB: Auditory enhancement of visual phosphene perception: The effect of temporal and spatial factors and of stimulus intensity. / Neurosci Lett 2010, 477:109-14. CrossRef
    73. Schmithost VJ, Holland SK, Plante E: Diffusion tensor imaging reveals white matter microstructure correlations with auditory processing ability. / Ear Hear 2011, 32:156-67. CrossRef
    74. Adank P, Devlin JT: On-line plasticity in spoken sentence comprehension: Adapting to time-compressed speech. / NeuroImage 2010, 49:1124-132. CrossRef
    75. Nourski KV, Reale RA, Oya H, Kawasaki H, Kovach CK, Chen H, Howard MA, Brugge JF: Temporal envelope of time-compressed speech represented in the human auditory cortex. / J Neurosci 2009, 29:15564-5574. CrossRef
    76. Hertrich I, Dietrich S, Ackermann H: Tracking the speech signal: Time-locked brain activity during perception of ultra-fast and moderately fast speech in blind and in sighted listeners. / Brain Lang 2013, 124:9-2. CrossRef
    77. Vagharchakian L, Dehaene-Lambertz G, Pallier C, Dehaene S: A temporal bottleneck in the language comprehension network. / J Neurosci 2012, 32:9089-102. CrossRef
  • 作者单位:Susanne Dietrich (1)
    Ingo Hertrich (1)
    Hermann Ackermann (1)

    1. Center for Neurology/Department of General Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler-Str. 3, D-72076, Tübingen, Germany
文摘
Background Individuals suffering from vision loss of a peripheral origin may learn to understand spoken language at a rate of up to about 22 syllables (syl) per second - exceeding by far the maximum performance level of normal-sighted listeners (ca. 8 syl/s). To further elucidate the brain mechanisms underlying this extraordinary skill, functional magnetic resonance imaging (fMRI) was performed in blind subjects of varying ultra-fast speech comprehension capabilities and sighted individuals while listening to sentence utterances of a moderately fast (8 syl/s) or ultra-fast (16 syl/s) syllabic rate. Results Besides left inferior frontal gyrus (IFG), bilateral posterior superior temporal sulcus (pSTS) and left supplementary motor area (SMA), blind people highly proficient in ultra-fast speech perception showed significant hemodynamic activation of right-hemispheric primary visual cortex (V1), contralateral fusiform gyrus (FG), and bilateral pulvinar (Pv). Conclusions Presumably, FG supports the left-hemispheric perisylvian “language network- i.e., IFG and superior temporal lobe, during the (segmental) sequencing of verbal utterances whereas the collaboration of bilateral pulvinar, right auditory cortex, and ipsilateral V1 implements a signal-driven timing mechanism related to syllabic (suprasegmental) modulation of the speech signal. These data structures, conveyed via left SMA to the perisylvian “language zones- might facilitate -under time-critical conditions -the consolidation of linguistic information at the level of verbal working memory.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700