Carbon Sequestration in Fine Roots and Foliage Biomass Offsets Soil CO2 Effluxes along a 19-year Chronosequence of Shrub Willow (Salix x dasyclados) Biomass Crops
详细信息    查看全文
  • 作者:Renato S. Pacaldo ; Timothy A. Volk ; Russell D. Briggs
  • 关键词:Greenhouse gas ; Carbon balance ; Continuous production ; Tear ; out ; Willow fields
  • 刊名:BioEnergy Research
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:7
  • 期:3
  • 页码:769-776
  • 全文大小:331 KB
  • 参考文献:1. Heller MC, Keoleian GA, Volk TA (2003) Life cycle assessment of a willow bioenergy cropping system. Biomass Bioenergy 25:147-65 <a class="external" href="http://dx.doi.org/10.1016/S0961-9534(02)00190-3" target="_blank" title="It opens in new window">CrossRefa>
    2. Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental, and economic performance. Crit Rev Plant Sci 24:385-06 <a class="external" href="http://dx.doi.org/10.1080/07352680500316334" target="_blank" title="It opens in new window">CrossRefa>
    3. Kuzovkina YA, Volk TA (2009) The characterization of willow ( / Salix L.) varieties for use in ecological engineering applications: coordination of structure, function and autecology. Ecol Eng 35:1178-189 <a class="external" href="http://dx.doi.org/10.1016/j.ecoleng.2009.03.010" target="_blank" title="It opens in new window">CrossRefa>
    4. Pacaldo RS, Volk TA, Briggs RD (2013) Greenhouse gas potential of shrub willow biomass crop based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenergy Res 6:252-62. doi:an class="a-plus-plus non-url-ref">10.1007/s12155-012-9250-y <a class="external" href="http://dx.doi.org/10.1007/s12155-012-9250-y" target="_blank" title="It opens in new window">CrossRefa>
    5. Pacaldo RS, Volk TA, Briggs RD, Abrahamson LA, Bevilacqua E, Fabio E (2013) Soil COass="a-plus-plus">2 effluxes, spatial and temporal variations, and root respiration in shrub willow biomass crops ( / Salix x dasyclados) along a 21-year chronoseqeunce as affected by continuous production and crop removal (tear-out) treatments. Glob Chang Biol Bioenergy. doi:an class="a-plus-plus non-url-ref">10.1111/gcbb.12108
    6. Hutton FZ, Rice CE (1977) Soil survey of Onondaga County, New York. USDA Soil Conser, Serv. In Cooperation with Cornell University Agric. Exp. Stn, Ithaca, p 233
    7. Abegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20:399-11 <a class="external" href="http://dx.doi.org/10.1016/S0961-9534(01)00009-5" target="_blank" title="It opens in new window">CrossRefa>
    8. Rytter RM, Rytter L (1998) Growth, decay, and turnover rates of fine roots of basket willow. Can J For Res 28:893-02 <a class="external" href="http://dx.doi.org/10.1139/x98-063" target="_blank" title="It opens in new window">CrossRefa>
    9. Stadnyk CN (2010) Root dynamics and carbon accumulation of six willow clones in Saskatchewan. M.Sc. thesis. University of Saskatchewan, Saskatoon
    10. Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, net primary yield, and soil nitrogen availability: a new hypothesis. Ecology 66(4):1377-390 <a class="external" href="http://dx.doi.org/10.2307/1939190" target="_blank" title="It opens in new window">CrossRefa>
    11. Schoette AW, Fahey TJ (1994) Foliage and fine root longevity of pines. Ecol Bull 43:136-53
    12. Hendrick RL, Pregitzer KS (1993) The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems. Can J For Res 23:2507-520 <a class="external" href="http://dx.doi.org/10.1139/x93-312" target="_blank" title="It opens in new window">CrossRefa>
    13. Burke MK, Raynal DJ (1994) Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant Soil 162:135-46 <a class="external" href="http://dx.doi.org/10.1007/BF01416099" target="_blank" title="It opens in new window">CrossRefa>
    14. Fahey TJ, Hughes JW (1994) Fine root dynamics in northern hardwood forest ecosystem, Hubbard Brook Experimental Forest, NH. J Ecol 82:533-48 <a class="external" href="http://dx.doi.org/10.2307/2261262" target="_blank" title="It opens in new window">CrossRefa>
    15. Gill RA, Jackson R (2000) Global patterns of root turnover for terrestrial ecosystem. New Phytol 147:13-1 <a class="external" href="http://dx.doi.org/10.1046/j.1469-8137.2000.00681.x" target="_blank" title="It opens in new window">CrossRefa>
    16. Caputo J, Balogh S, Volk TA, Johnson L, Puettman M, Lippke BR, Oneil E (2013) Incorporating uncertainty analysis into life-cycle analysis (LCA) of short-rotation willow biomass (Salix spp.) crops. Bioenergy Res. doi:an class="a-plus-plus non-url-ref">10.1007/s12155-013-9347-y
    17. Hangs RD (2013) Biomass production and nutrient cycling in short-rotation coppice willow (Salix spp.) bioenergy plantations in Saskatchewan, Canada. Ph.D. Dissertation. University of Saskatchewan, Saskatoon
    18. Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7-0 <a class="external" href="http://dx.doi.org/10.1023/A:1006247623877" target="_blank" title="It opens in new window">CrossRefa>
    19. Rustad LE, Huntington TG, Boone RD (2000) Controls on soil respiration: implications for climate change. Biogeochemistry 48:1- <a class="external" href="http://dx.doi.org/10.1023/A:1006255431298" target="_blank" title="It opens in new window">CrossRefa>
    20. Jannsens IA, Lankreijer H et al (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269-78 <a class="external" href="http://dx.doi.org/10.1046/j.1365-2486.2001.00412.x" target="_blank" title="It opens in new window">CrossRefa>
    21. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods of observations. Biogeochemistry 48:115-46 <a class="external" href="http://dx.doi.org/10.1023/A:1006244819642" target="_blank" title="It opens in new window">CrossRefa>
    22. Nikiema P, Rothstein DE, Miller RO (2012) Initial greenhouse gas emissions and nitrogen leaching losses associated with converting pastureland to short-rotation woody bioenergy crops in Northern Michigan, USA. Biomass Bioenergy 39:413-26 <a class="external" href="http://dx.doi.org/10.1016/j.biombioe.2012.01.037" target="_blank" title="It opens in new window">CrossRefa>
    23. Arevalo CBM, Bhatti JS, Chang SX, Sidders D (2011) Land-use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agric Ecosyst Environ. doi:an class="a-plus-plus non-url-ref">10.1016/j.agee.2011.03.013
    24. Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, Southern Ontario, Canada. Agrofor Syst 66:243-57 <a class="external" href="http://dx.doi.org/10.1007/s10457-005-0361-8" target="_blank" title="It opens in new window">CrossRefa>
    25. Davidson EA, Janssens IA, Lou Y (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob Chang Biol 12:154-64 <a class="external" href="http://dx.doi.org/10.1111/j.1365-2486.2005.01065.x" target="_blank" title="It opens in new window">CrossRefa>
    26. Scott-Denton LE, Rosentiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterothropic and rhizospheric components of soil respiration. Glob Chang Biol 12:205-16 <a class="external" href="http://dx.doi.org/10.1111/j.1365-2486.2005.01064.x" target="_blank" title="It opens in new window">CrossRefa>
    27. Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystem: global patterns and controlling factors. J Plant Ecol 1:85-6 <a class="external" href="http://dx.doi.org/10.1093/jpe/rtn002" target="_blank" title="It opens in new window">CrossRefa>
    28. Pacaldo RS, Volk TA, Briggs RD (2013) No differences in soil organic carbon in short rotation willow ( / Salix x dasyclados) along a 19-year chronosequence. Biomass Bioenergy. doi:an class="a-plus-plus non-url-ref">10.1016/j.biombioe.2013.10.018
    29. Prescott CE (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemsitry 101:133-49 <a class="external" href="http://dx.doi.org/10.1007/s10533-010-9439-0" target="_blank" title="It opens in new window">CrossRefa>
    30. Brady NC, Weil RR (2008) The nature and properties of soils. 14th ed. Prentice Hall. 965 pp
    31. Volk TA (2002) Alternative methods of site preparations and coppice management during the establishment of short-rotation woody crops. Ph. D Thesis. State University of New York—Environmental Science and Forestry, Syracuse
  • 作者单位:Renato S. Pacaldo (1) (2)
    Timothy A. Volk (3)
    Russell D. Briggs (4)

    1. Mindanao State University—Main Campus, Marawi City, 9700, Philippines
    2. State University of New York—Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY, 13210, USA
    3. SUNY-ESF, 346 Illick Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
    4. SUNY-ESF, 358 Illick Hall, 1 Forestry Drive, Syracuse, NY, 13210, USA
  • ISSN:1939-1242
文摘
Previous greenhouse gas (GHG) assessments for the shrub willow biomass crops (SWBC) production system lacked quantitative data on the soil CO2 efflux (Fc). This study quantifies the mean annual cumulative Fc, the C sequestration in the above- and belowground biomass, and the carbon balance of the production system. We utilized four SWBC fields, which have been in production for 5, 12, 14, and 19?years. Two treatments were applied: continuous production (CP)—shrub willows were harvested, and stools were allowed to regrow, and tear-out (TO) (crop removal)—shrub willows were harvested, and stools were sprayed with herbicide following spring, crushed, and mixed into the soil. Mean annual cumulative Fc were measured using dynamic closed chambers (LI-8100A and LI-8150). Across different age classes, the mean cumulative Fc ranged from 27.2 to 35.5?Mg CO2 ha? year? for CP and 26.5 to 29.3?Mg CO2 ha? year? for TO. The combined carbon (C) sequestration of the standing above- and belowground biomass, excluding stems, ranged from 50.6 to 94.8?Mg CO2 eqv. ha?. In the CP treatment, the annual C sequestration in the fine roots and foliage offsets the annual cumulative Fc. Across different age classes, C balances ranged from ?1.5 to ?9.3?Mg CO2 ha? for CP and 26.5 to 29.3?Mg CO2 ha? for TO. The GHG potential of SWBC is about ?6.3?Mg CO2 eqv. ha? at the end of 19 years, suggesting that the SWBC system sequesters C until termination of the crop.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700