Isolation and characterization of OsMY1, a putative partner of OsRac5 from Oryza sativa L.
详细信息    查看全文
  • 作者:Wei-Hong Liang (1)
    Hua-Hua Wang (1)
    Hui Li (1)
    Jun-Jie Wang (1)
    Dan-Dan Yang (1)
    Yu-Fan Hao (1)
    Jia-Jia Li (1)
    Chen Lou (1)
    Qun-Ting Lin (1)
    Cheng-Qian Hou (1)
  • 关键词:Rice ; ROP ; Protein–protein interaction ; Mutation ; Coiled ; coil domain ; Expression profile
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:41
  • 期:3
  • 页码:1829-1836
  • 全文大小:780 KB
  • 参考文献:1. Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs-for signal integration and diversification in plants. Trends Plant Sci 11(6):309-15 CrossRef
    2. Samaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11(12):594-00 CrossRef
    3. Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C (2010) / Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22(9):3034-052 CrossRef
    4. Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16(11):5385-399 CrossRef
    5. Gu Y, Fu Y, Dowd P, Li SD, Vernoud V, Gilroy S, Yang ZB (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169(1):127-38 CrossRef
    6. Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152(5):1019-032 CrossRef
    7. Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61(7):1969-986 CrossRef
    8. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547-72 CrossRef
    9. Prokhnevsky AI, Peremyslov VV, Dolja VV (2008) Overlapping functions of the four class XI myosins in / Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci USA 105(50):19744-9749 CrossRef
    10. Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulummotility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107(15):6894-899 CrossRef
    11. Jiang SY, Cai M, Ramachandran S (2007) ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations. Dev Biol 304(2):579-92 CrossRef
    12. Mi ZY, Wang SS, Wu NH (2002) Isolation of OsRacD gene encoding a small GTP-binding protein from rice. Chin Sci Bull 47(20):1673-679
    13. Ye JR, Huang MJ, Wu NH (2003) Fertility analysis of the / Arabidopsis transformed with antisense rice OsRacD gene. Prog Natl Sci 13(6):424-28
    14. Ye JR, Huang MJ, Zhao SH, Wu NH (2004) The correlation analysis of the expression of OsRacD and rice photoperiod fertility transition. Prog Natl Sci 14(2):166-72 (in chinese)
    15. Liang WH, Tang CR, Wu NH (2004) Cloning and characterization of a new actin gene from / Oryza sativa L. Prog Natl Sci 14(10):867-74 CrossRef
    16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (?Delta Delta C (T)) method. Methods 25(4):402-08 CrossRef
    17. Liang WH, Wu NH (2006) Effects of G15V point mutation on functions of rice OsRac5 protein. Chin J Biochem Mol Biol 22(4):338-42 (in chinese)
    18. Liu XF, Liang WH (2010) Effects of T20N site directed mutation on GTPase activities of OsRacD from / Oryza sativa. Chin Biotechnol 30(1):56-1 (in chinese)
    19. Liang WH, Zhang LJ, Li L, Zhang F, Shi HH, Shang F, Li H, Li MM (2010) Effects of D121N point mutation on OsRac5 protein. In: 3rd international conference on future biomedical information engineering, vol III, pp 253-56
    20. Hashimoto K, Igarashi H, Mano SJ, Takenaka C, Shiina T, Yamaguchi M, Demura T, Nishimura M, Shimmen T, Yokota E (2008) An isoform of / Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region. J Exp Bot 59(13):3523-531 CrossRef
    21. Gu Y, Li S, Lord EM, Yang Z (2006) Members of a novel class of / Arabidopsis Rho guanine nucleotide exchange factors control RhoGTPase-dependent polar growth. Plant Cell 18(2):366-81 CrossRef
    22. Klahre U, Kost B (2006) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18(11):3033-046 CrossRef
    23. Kieffer F, Elmayan T, Rubier S, Simon-Plas F, Dagher MC, Blein JP (2000) Cloning of Rac and Rho-GDI from tobacco using an heterologous two-hybrid screen. Biochimie 82(12):1099-105 CrossRef
    24. Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S (2007) A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17(11):947-52 CrossRef
    25. Bloch D, Hazak O, Lavy M, Yalovsky S (2008) A novel ROP/RAC GTPase effector integrates plant cell form and pattern formation. Plant Signal Behav 3(1):41-3 CrossRef
    26. Li S, Gu Y, Yan A, Lord E, Yang ZB (2008) RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol Plant 1(6):1021-035 CrossRef
    27. Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S (2010) A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol 8(1):e1000282. doi:10.1371/journal.pbio.1000282 CrossRef
    28. Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21(10):375-82 CrossRef
    29. Lapierre LA, Kumar R, Hales CM, Navarre J, Bhartur SG, Burnette JO, Provance DW Jr, Mercer JA, B?hler M, Goldenring JR (2001) Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 12(6):1843-857 CrossRef
    30. Li H, Lin Y, Heath RM, Zhu MX, Yang ZB (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant cell 11(9):1731-742
    31. Li H, Shen JJ, Zheng ZL, Lin Y, Yang ZB (2001) The Rop GTPase switch controls multiple developmental processes in / Arabidopsis. Plant Physiol 126(2):670-84 CrossRef
  • 作者单位:Wei-Hong Liang (1)
    Hua-Hua Wang (1)
    Hui Li (1)
    Jun-Jie Wang (1)
    Dan-Dan Yang (1)
    Yu-Fan Hao (1)
    Jia-Jia Li (1)
    Chen Lou (1)
    Qun-Ting Lin (1)
    Cheng-Qian Hou (1)

    1. College of Life Science, Henan Normal University, Xinxiang, 453007, China
  • ISSN:1573-4978
文摘
OsRac5 belongs to the rice Rho of plants family, and acts as the molecular switch in the signal pathway which is pivotally involved in the rice fertility control. One of its putative partners, OsMY1, was isolated by yeast two-hybrid screening from rice panicle cDNA library. Bioinformatics analysis shows that OsMY1 contains a coiled-coil domain which generally appeared in the partners of Rho GTPases. By yeast two-hybrid assay, it is confirmed that OsMY1 binds both the wild type (WT) and constitutively active (CA) OsRac5, but does not interact with dominantly negative OsRac5. In addition, the interactions between OsMY1 and WT-OsRac5 or CA-OsRac5 in vivo are demonstrated by bimolecular fluorescence complementation assay. Using PCR-mediated sequence deletion and point mutation of OsMY1, the interaction between OsMY1 and OsRac5 was identified to be mediated by the coiled-coil domain in OsMY1, and their binding was quantified by O-nitro-phenyl-β-d-galactopyranoside assay. Real-time PCR shows that OsMY1 and OsRac5 are coordinately expressed in rice leaves and panicles with similar expression patterns. Our results suggest that OsMY1 is an important target of OsRac5 and that these two genes are involved in the same biological processes in rice growth and development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700