Capacity analysis for cognitive heterogeneous networks with ideal/non-ideal sensing
详细信息    查看全文
  • 作者:Tao Huang (1)
    Ying-lei Teng (1)
    Meng-ting Liu (1)
    Jiang Liu (1)

    1. State Key Laboratory of Networking and Switching Technology
    ; Beijing University of Posts and Telecommunications ; Beijing ; 100876 ; China
  • 关键词:Cognitive heterogeneous networks ; Markov chain ; Stochastic geometry ; Homogeneous Poisson point process (HPPP) ; TP393
  • 刊名:Journal of Zhejiang University - Science C
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 页码:1-11
  • 全文大小:732 KB
  • 参考文献:1. Akoum, S., Zwingelstein-Colin, M., Heath, R.W., / et al., 2010. Cognitive cooperation for the downlink of frequency reuse small cells. Proc. 2nd Int. Workshop on Cognitive Information Processing, p.111鈥?15. [doi:10.1109/CIP.2010.5604251]
    2. Akoum, S., Kountouris, M., Heath, R.W., 2011. On imperfect CSI for the downlink of a two-tier network. Proc. IEEE Int. Symp. on Information Theory, p.553鈥?57. [doi:10.1109/ISIT.2011.6034189]
    3. Andrews, J.G., Baccelli, F., Ganti, R.K., 2011. A tractable approach to coverage and rate in cellular networks. / IEEE Trans. Commun., 59(11):3122鈥?134. [doi:10.1109/TCOMM.2011.100411.100541] CrossRef
    4. Bennis, M., Perlaza, S.M., Blasco, P., / et al., 2013. Self-organization in small cell networks: a reinforcement learning approach. / IEEE Trans. Wirel. Commun., 12(7): 3202鈥?212. [doi:10.1109/TWC.2013.060513.120959] CrossRef
    5. Dhillon, H.S., Ganti, R.K., Baccelli, F., / et al., 2012a. Modeling and analysis of / K-tier downlink heterogeneous cellular networks. / IEEE J. Sel. Area Commun., 30(3):550鈥?60. [doi:10.1109/JSAC.2012.120405] CrossRef
    6. Dhillon, H.S., Novlan, T.D., Andrews, J.G., 2012b. Coverage probability of uplink cellular networks. Proc. IEEE Global Communications Conf., p.2179鈥?184. [doi:10.1109/GLOCOM.2012.6503438]
    7. ElSawy, H., Hossian, E., 2013. Two-tier HetNets with cognitive femtocells: downlink performance modeling and analysis in a multichannel environment. / IEEE Trans. Mob. Comput., 13(3):649鈥?63. [doi:10.1109/TMC.2013.36] CrossRef
    8. ElSawy, H., Hossain, E., Kim, D.I., 2013a. HetNets with cognitive small cells: user offloading and distributed channel access techniques. / IEEE Commun. Mag., 51(6):28鈥?6. [doi:10.1109/MCOM.2013.6525592] CrossRef
    9. ElSawy, H., Hossain, E., Haenggi, M., 2013b. Stochastic geometry for modeling, analysis, and design of multi-tier and cognitive cellular wireless networks: a survey. / IEEE Commun. Surv. Tutor., 15(3):996鈥?019. [doi:10.1109/SURV.2013.052213.00000] CrossRef
    10. Fehske, A.J., Viering, I., Voigt, J., / et al., 2014. Small-cell self-organizing wireless networks. / Proc. IEEE, 102(3):334鈥?50. [doi:10.1109/JPROC.2014.2301595] CrossRef
    11. Gelabert, X., Sallent, O., P茅rez-Romero, J., / et al., 2010. Spectrum sharing in cognitive radio networks with imperfect sensing: a discrete-time Markov model. / Comput. Netw., 54(14):2519鈥?536. [doi:10.1016/j.comnet.2010.04.005] CrossRef
    12. Heath, R.W., Kountouris, M., Bai, T., 2013. Modeling heterogeneous network interference using Poisson point processes. / IEEE Trans. Signal Process., 61(16):4114鈥?126. [doi:10.1109/TSP.2013.2262679] CrossRef
    13. Huang, Y.C., Ko, K.T., Huang, Q., / et al., 2011. An efficient method for performance evaluation of femto-macro overlay systems. Proc. IEEE Int. Conf. on communications, p.1鈥?. [doi:10.1109/icc.2011.5962706]
    14. Hwang, I., Song, B., Soliman, S.S., 2013. A holistic view on hyper-dense heterogeneous and small cell networks. / IEEE Commun. Mag., 51(6):20鈥?7. [doi:10.1109/MCOM.2013.6525591] CrossRef
    15. Kelif, J.M., Alman, E., 2005. Downlink fluid model of CDMA networks. Proc. IEEE 61st Vehicular Technology Conf., p.2264鈥?268. [doi:10.1109/VETECS.2005.1543738]
    16. Khawam, K., Samhat, A.E., Ibrahim, M., / et al., 2007. Fluid model for wireless adhoc networks. Proc. IEEE 18th Int. Symp. on Personal, Indoor and Mobile Radio Communications, p.1鈥?. [doi:10.1109/PIMRC.2007.4394499]
    17. Khoshkholgh, M., Navaie, K., Yanikomeroglu, H., 2013. Outage performance of the primary service in spectrum sharing networks. / IEEE Trans. Mob. Comput., 12(10): 1955鈥?971. [doi:10.1109/TMC.2012.156] CrossRef
    18. Madhusudhanan, P., Restrepo, J.G., Liu, Y., / et al., 2012. Heterogeneous cellular network performance analysis under open and closed access. Proc. IEEE Globecom Workshops, p.563鈥?68. [doi:10.1109/GLOCOMW.2012.6477635]
    19. Meerja, K.A., Ho, P.H., Wu, B., 2011. A novel approach for co-channel interference mitigation in femtocell networks. Proc. IEEE Global Telecommunications Conf., p.1鈥?. [doi:10.1109/GLOCOM.2011.6133956]
    20. Nakamura, T., Nagata, S., Benjebbour, A., / et al., 2013. Trends in small cell enhancements in LTE advanced. / IEEE Commun. Mag., 51(2):98鈥?05. [doi:10.1109/MCOM.2013.6461192] CrossRef
    21. Stoyan, D., Kendall, W.S., Mecke, J., 1995. Stochastic Geometry and Its Applications (2nd Ed.). John Wiley & Sons, Chichester.
  • 刊物类别:Computer Science
  • 刊物主题:Computer Science, general
  • 出版者:Zhejiang University Press, co-published with Springer
  • ISSN:1869-196X
文摘
Due to irregular deployment of small base stations (SBSs), the interference in cognitive heterogeneous networks (CHNs) becomes even more complex; in particular, the uncertainty of spectrum mobility aggravates the interference context. In this case, how to analyze system capacity to obtain a closed-form expression becomes a crucial problem. In this paper we employ stochastic methods to formulate the capacity of CHNs and achieve a closed-form expression. By using discrete-time Markov chains (DTMCs), the spectrum mobility with respect to the arrival and departure of macro base station (MBS) users is modeled. Then an integral method is proposed to derive the interference based on stochastic geometry (SG). Also, the effect of sensing accuracy on network capacity is discussed by concerning false-alarm and miss-detection events. Simulation results are illustrated to show that the proposed capacity analysis method for CHNs can approximate the conventional sum methods without rigorous requirement for channel station information (CSI). Therefore, it turns out to be a feasible and efficient way to capture the network capacity in CHNs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700