Influences of substituting Ni with M (M=Cu, Co, Mn) on gaseous and electrochemical hydrogen storage kinetics of Mg20Ni10 alloys
详细信息    查看全文
  • 作者:Yang-huan Zhang (1) (2)
    Tai Yang (1) (2)
    Ting-ting Zhai (2)
    Hong-wei Shang (1) (2)
    Guo-fang Zhang (1) (2)
    Dong-liang Zhao (2)
  • 关键词:Mg2Ni ; type alloy ; element substitution ; nanocrystalline and amorphous ; hydrogen storage kinetics
  • 刊名:Journal of Central South University
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:21
  • 期:5
  • 页码:1705-1713
  • 全文大小:
  • 参考文献:1. JAIN I P, LAL C, JAIN A. Hydrogen storage in Mg: A most promising material [J]. International Journal of Hydrogen Energy, 2009, 35(10): 5133-144. CrossRef
    2. SAKINTUNA B, LAMATI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage: A review [J]. International Journal of Hydrogen Energy, 2007, 32(9): 1121-140. CrossRef
    3. EBRAHIMI-PURKANI A, KASHANI-BOZORG S F. Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing [J]. Journal of Alloys and Compounds, 2008, 456(1/2): 211-15. CrossRef
    4. CHANDRA D, SHARMA A, CHELLAPPA R, CATHEY W N, LYNCH F E, BOWMAN Jr R C, WERMER J R, PAGLIERI S N. Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5 at.%C alloy [J]. Journal of Alloys and Compounds, 2008, 452(2): 312-24. CrossRef
    5. SCHLAPBACH L, ZüTTEL A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353-58. CrossRef
    6. LASS E A. Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification [J]. International Journal of Hydrogen Energy, 2011, 36(17): 10787-0796. CrossRef
    7. JEON K J, MOON H R, RUMINSKI A M, JIANG B, KISIELOWSKI C, BARDHAN R, URBAN J J. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J]. Nature Materials, 2011, 10(4): 286-90. CrossRef
    8. KHRUSSANOVA M, MANDZHUKOVA T, GRIGOROVA E, KHRISTOV M, PESHEV P. Hydriding properties of the nanocomposite 85 wt.%Mg-15 wt.% Mg2Ni0.8Co0.2 obtained by ball milling [J]. Journal of Materials Science, 2007, 42(10): 3338-342. CrossRef
    9. XIE L, SHAO H Y, WANG Y T, LI Y, LI X G. Synthesis and hydrogen storing properties of nanostructured ternary Mg-Ni-Co compounds [J]. International Journal of Hydrogen Energy, 2007, 32(12): 1949-953. CrossRef
    10. IWAKURA C, INOUE H, NOHARA S, SHIN-YA R, KUROSAKA S, MIYANOHARA K. Effects of surface and bulk modifications on electrochemical and physicochemical characteristics of MgNi alloys [J]. Journal of Alloys and Compounds, 2002, 330-32: 636-39. CrossRef
    11. ZHANG Y H, HAN X Y, LI B W, REN H P, DONG X P, WANG X L. Electrochemical characteristics of Mg2em class="a-plus-plus">x ZrxNi ( / x=0-.6) electrode alloys prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 2008, 450(1/2): 208-14. CrossRef
    12. ANIK M. Improvements of the electrochemical hydrogen storage performance of Mg2Ni by the partial replacements of Mg by Al, Ti and Zr [J]. Journal of Alloys and Compounds, 2009, 486(1/2): 109-14. CrossRef
    13. FROES F H, SURYANARAYANA C, RUSSELL K, LI C G. Synthesis of intermetallics by mechanical alloying [J]. Materials Science and Engineering: A, 1995, 192-93: 612-23.
    14. SONG M Y, KWON S N, BAE J S, HONG S H. Hydrogen-storage properties of Mg-23.5Ni-(0 and 5)Cu prepared by melt spinning and crystallization heat treatment [J]. International Journal of Hydrogen Energy, 2008, 33(6): 1711-718. CrossRef
    15. HUANG L J, LIANG G Y, SUN Z B, ZHOU Y F. Nanocrystallization and hydriding properties of amorphous melt-spun Mg65Cu25Nd10 alloy [J]. Journal of Alloys and Compounds, 2007, 432(1/2): 172-76. CrossRef
    16. SPASSOV T, KSTER U. Thermal stability and hydriding properties of nanocrystalline melt-spun Mg63Ni30Y7 alloy [J]. Journal of Alloys and Compounds, 1998, 279(2): 279-86. CrossRef
    17. HUANG L J, LIANG G Y, SUN Z B, WU D C. Electrode properties of melt-spun Mg-Ni-Nd amorphous alloys [J]. Journal of Power Sources, 2006, 160(1): 684-87. CrossRef
    18. ZHANG Y H, LIU Z C, LI B W, MA Z H, GUO S H, WANG X L. Structure and electrochemical performances of Mg2Ni1em class="a-plus-plus">x Mnx ( / x= 0-.4) electrode alloys prepared by melt spinning [J]. Electrochimica Acta, 2010, 56(1): 427-34. CrossRef
    19. SIMII M V, ZDUJI M, DIMITRIJEVI R, NIKOLI-BUJANOVI L, POPOVI N H. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying [J]. Journal of Power Sources, 2006, 158(1) 730-34. CrossRef
    20. ZHANG Y H, REN H P, MA Z H, LI X, ZHANG G F, ZHAO D L. Gaseous and electrochemical hydrogen storage kinetics of as-spun nanocrystalline Mg2Ni1em class="a-plus-plus">x Cux ( / x=0-.4) alloys [J]. Chinese Journal of Materials Research, 2011, 25(4): 373-80.
    21. CUI N, LUO J L. Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes [J]. International Journal of Hydrogen Energy, 1999, 24(1): 37-2. CrossRef
    22. KUMAR L H, VISWANATHAN B, MURTHY S S. Hydrogen absorption by Mg2Ni prepared by polyol reduction [J]. Journal of Alloys and Compounds, 2008, 461(1-): 72-6. CrossRef
    23. ZHAO X Y, DING Y, MA L Q, WANGL Y, YANG M, SHEN X D. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel [J]. International Journal of Hydrogen Energy, 2008, 33(22): 6727-733. CrossRef
    24. WU Y, HAN W, ZHOU S X, LOTOTSKY M V, SOLBERG J K, YARTYS V A. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg-10Ni-2Mm alloys [J]. Journal of Alloys and Compounds, 2008, 466(1/2): 176-81. CrossRef
    25. LIANG G X, WANG E D, FANG S S. Hydrogen absorption and desorption characteristics of mechanically milled Mg-35 wt% FeTi1.2 powders [J]. Journal of Alloys and Compounds, 1995, 223(1): 111-14. CrossRef
    26. WOO J H, LEE K S. Electrode characteristics of nanostructured Mg2Ni-type alloys prepared by mechanical alloying [J]. Journal of The Electrochemical Society, 1999, 146(3): 819-23. CrossRef
    27. RATNAKUMAR B V, WITHAM C, BOWMAN R C, Jr, HIGHTOWER A, FULTZ B. Electrochemical studies on LaNi5em class="a-plus-plus">x Snx metal hydride alloys [J]. Journal of The Electrochemical Society, 1996, 143(8): 2578-584. CrossRef
    28. ZHENG G, POPOV B N, WHITE R E. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution [J]. Journal of The Electrochemical Society, 1995, 142(8): 2695-698. CrossRef
    29. KLEPERIS J, WóJCIK G, CZERWINSKI A, SKOWRONSKI J, KOPCZYK M, BELTOWSKA-BRZEZINSKA M. Electrochemical behavior of metal hydrides [J]. Journal of Solid State Electrochemistry, 2001, 5(4): 229-49. CrossRef
    30. NOBUHARA K, KASAI H, DINO W A, NAKANISHI H. H2 dissociative adsorption on Mg, Ti, Ni, Pd and La surfaces [J]. Surface Science, 2004, 566-68: 703-07. CrossRef
    31. KURIYAMA N, SAKAI T, MIYAMURA H, UEHARA I, ISHIKAWA H, IWASAKI T. Electrochemical impedance and deterioration behavior of metal hydride electrodes [J]. Journal of Alloys and Compounds, 1993, 202: 183-97. CrossRef
    32. DRENCHEV B, SPASSOV T, RADEV D. Influence of alloying and microstructure on the electrochemical hydriding of TiNi-based ternary alloys [J]. Journal of Applied Electrochemistry, 2007, 38(4): 437-44. CrossRef
  • 作者单位:Yang-huan Zhang (1) (2)
    Tai Yang (1) (2)
    Ting-ting Zhai (2)
    Hong-wei Shang (1) (2)
    Guo-fang Zhang (1) (2)
    Dong-liang Zhao (2)

    1. Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal Resources, Inner Mongolia University of Science and Technology, Baotou, 014010, China
    2. Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing, 100081, China
  • ISSN:2227-5223
文摘
In this work, a comprehensive comparison regarding the impacts of M (M=Cu, Co, Mn) substitution for Ni on the structures and the hydrogen storage kinetics of the nanocrystalline and amorphous Mg20Ni10em class="a-plus-plus">x M x (M=Cu, Co, Mn; x=0-) alloys prepared by melt spinning has been carried out. The analysis of XRD and TEM reveals that the as-spun (M=None, Cu) alloys display an entire nanocrystalline structure, whereas the as-spun (M=Co, Mn) alloys hold a mixed structure of nanocrystalline and amorphous structure when M content x=4, indicating that the substitution of M (M=Co, Mn) for Ni facilitates the glass formation in the Mg2Ni-type alloy. Besides, all the as-spun alloys have a major phase of Mg2Ni but M (M=Co, Mn) substitution brings on the formation of some secondary phases, MgCo2 and Mg phases for M=Co as well as MnNi and Mg phases for M=Mn. Based upon the measurements of the automatic Sieverts apparatus and the automatic galvanostatic system, the impacts engendered by M (M=Cu, Co, Mn) substitution on the gaseous and electrochemical hydrogen storage kinetics of the alloys appear to be evident. The gaseous hydriding kinetics of the alloys first rises and then declines with the growing of M (M=Cu, Co, Mn) content. Particularly, the M (M= Mn) substitution results in a sharp drop in the hydriding kinetics when x=4. The M (M=Cu, Co, Mn) substitution ameliorates the dehydriding kinetics dramatically in the order (M=Co)>(M=Mn)>(M=Cu). The electrochemical kinetics of the alloys visibly grows with M content rising for (M=Cu, Co), while it first increases and then declines for (M=Mn).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700