Effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells
详细信息    查看全文
文摘
The study elementarily investigated the effect of the cathode structure on the electrochemical performance of anode-supported solid oxide fuel cells. Four single cells were fabricated with different cathode structures, and the total cathode thickness was 15, 55, 85, and 85 ¦Ìm for cell-A, cell-B, cell-C, and cell-D, respectively. The cell-A, cell-B, and cell-D included only one cathode layer, which was fabricated by ( \textLa0.74 \textBi0.10 \textSr0.16 )\textMnO3 - d \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} (LBSM) electrode material. The cathode of the cell-C was composed of a ( \textLa0.74 \textBi0.10 \textSr0.16 )\textMnO3 - d - ( \textBi0.7 \textEr0.3 \textO1.5 ) \left( {{\text{La}}_{0.74} {\text{Bi}}_{0.10} {\text{Sr}}_{0.16} } \right){\text{MnO}}_{{3 - \delta }} - \left( {{\text{Bi}}_{0.7} {\text{Er}}_{0.3} {\text{O}}_{1.5} } \right) (LBSM–ESB) cathode functional layer and a LBSM cathode layer. Different cathode structures leaded to dissimilar polarization character for the four cells. At 750¡ãC, the total polarization resistance (R p) of the cell-A was 1.11, 0.41 and 0.53 Ω cm2 at the current of 0, 400, and 800 mA, respectively, and that of the cell-B was 1.10, 0.39, and 0.23 Ω cm2 at the current of 0, 400, and 800 mA, respectively. For cell-C and cell-D, their polarization character was similar to that of the cell-B and R p also decreased with the increase of the current. The maximum power density was 0.81, 1.01, 0.79, and 0.43 W cm−2 at 750¡ãC for cell-D, cell-C, cell-B, and cell-A, respectively. The results demonstrated that cathode structures evidently influenced the electrochemical performance of anode-supported solid oxide fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700