Yeast cells as microcapsules. Analytical tools and process variables in the encapsulation of hydrophobes in S. cerevisiae
详细信息    查看全文
  • 作者:Federica Ciamponi (1)
    Craig Duckham (2)
    Nicola Tirelli (3) nicola.tirelli@manchester.ac.uk
  • 关键词:Encapsulation – ; Yeast – ; Cell wall – ; Flavours – ; Diffusion
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:95
  • 期:6
  • 页码:1445-1456
  • 全文大小:780.7 KB
  • 参考文献:1. Belletti N, Ndaguimana M, Sisto C, Guerzoni ME, Lanciotti R, Gardini F (2004) Evaluation of the antimicrobial activity of citrus essences on Saccharomyces cerevisiae. J Agr Food Chem 52:6932–6938
    2. Bishop JRP, Nelson G, Lamb J (1998) Microencapsulation in yeast cells. J Microencapsul 15:761–773
    3. Blanquet S, Marol-Bonnin S, Beyssac E, Pompon D, Renaud M, Alric M (2001) The ‘biodrug’ concept: an innovative approach to therapy. Trends Biotechnol 19:393–400
    4. Carlson A, Signs M, Liermann L, Boor R, Jem KJ (1995) Mechanical disruption of Escherichia coli for plasmid recovery. Biotechnol Bioeng 48:303–315
    5. Clausen MK, Christia K, Jensen PK, Behnke O (1974) Isolation of lipid particles from Baker's yeast. FEBS Lett 43:176–179
    6. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, Warmington JR, Wyllie SG (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88:170–175
    7. Denobel JG, Klis FM, Priem J, Munnik T, Vandenende H (1990) The glucanase-soluble mannoproteins limit cell-wall porosity in Saccharomices cerevisiae. Yeast 6:491–499
    8. Essary BD, Marshall PA (2009) Assessment of FUN-1 vital dye staining: yeast with a block in the vacuolar sorting pathway have impaired ability to form CIVS when stained with FUN-1 fluorescent dye. J Microbiol Meth 78:208–212
    9. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    10. Griffin S, Wyllie SG, Markham J (1999a) Determination of octanol-water partition coefficient for terpenoids using reversed-phase high-performance liquid chromatography. J Chromatogr A 864:221–228
    11. Griffin SG, Wyllie SG, Markham JL, Leach DN (1999b) The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J 14:322–332
    12. Hurt RA, Qiu XY, Wu LY, Roh Y, Palumbo AV, Tiedje JM, Zhou JH (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microb 67:4495–4503
    13. Kilcher G, Delneri D, Duckham C, Tirelli N (2008) Probing (macro)molecular transport through cell walls. Faraday Discuss 139:199–212
    14. Kimura K, Yamaoka M, Kamisaka Y (2004) Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Meth 56:331–338
    15. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256
    16. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202
    17. Kuske CR, Banton KL, Adorada DL, Stark PC, Hill KK, Jackson PJ (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl Environ Microb 64:2463–2472
    18. Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10:1421–1428
    19. Millard PJ, Roth BL, Thi HPT, Yue ST, Haugland RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microb 63:2897–2905
    20. Nelson G (2002) Application of microencapsulation in textiles. Int J Pharm 242:55–62
    21. Nelson G, Duckham SC, Crothers MED (2006) Microencapsulation in yeast cells and applications in drug delivery. In: Svenson S (ed) Polymeric drug delivery I: particulate drug carriers. American Chemical Society, Washington, pp 268–281
    22. Normand V, Dardelle G, Bouquerand PE, Nicolas L, Johnston DJ (2005) Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agr Food Chem 53:7532–7543
    23. Ovalle R, Lim ST, Holder B, Jue CK, Moore CW, Lipke PN (1998) A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14:1159–1166
    24. Pannell NA (1994) Encapsulating materials in microbial cells—by passive diffusion in absence of solvent or plasmolyser. Patent EP242135-A2
    25. Paramera EI, Konteles SJ, Karathanos VT (2011) Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 125:892–902
    26. Riezman H (1985) Endocytosis in yeast—several of the yeast secretory mutants are defective in endocytosis. Cell 40:1001–1009
    27. Sandager L, Gustavsson MH, Stahl U, Dahlqvist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid synthesis is non-essential in yeast. J Biol Chem 277:6478–6482
    28. Shank JL (1976) Encapsulating eg dyes, drugs, chemicals, adhesives etc—using microorganisms eg fungi, yeasts by forming large fat globules within cell wall. Patent US498208-B
    29. Shi GR, Rao LQ, Yu HZ, Xiang H, Pen GP, Long S, Yang C (2007) Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J Food Eng 80:1060–1067
    30. Shi GR, Rao LQ, Yu HZ, Xiang H, Yang H, Ji R (2008) Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 349:83–93
    31. Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222
    32. Stowers CC, Boczko EM (2007) Reliable cell disruption in yeast. Yeast 24:533–541
    33. Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161:1195–1200
    34. Vianna CR, Silva CLC, Neves MJ, Rosa CA (2008) Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaca: trehalose metabolism, heat and ethanol resistance. Antonie Van Leeuwenhoek 93:205–217
    35. Werner-Washbourne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401
    36. Zhang T, Fang HHP (2004) Quantification of Saccharomyces cerevisiae viability using BacLight. Biotechnol Lett 26:989–992
    37. Zweytick D, Athenstaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120
  • 作者单位:1. School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK2. Cara Technology, Leatherhead Enterprise Centre, Randalls Road, Leatherhead, KT22 7RY UK3. School of Materials and School of Biomedicine, University of Manchester, Oxford Road, Manchester, M13 9PT UK4. Molteni Farmaceutici, SPA, 50018 Scandicci (Firenze), Italy5. CD R&D consultancy services, Leatherhead, KT22 9HX UK
  • ISSN:1432-0614
文摘
Yeast cells can be used as biocompatible and biodegradable containers for the microencapsulation of a variety of actives. Despite the wide application of this process, e.g. in the food industry, mechanism and controlling factors are yet poorly known. In this study we have studied kinetics and mechanistic aspects of the spontaneous internalization of terpenes (as model hydrophobic compounds) in Saccharomyces cerevisiae, quantifying their encapsulation through HPLC analysis and fluorescent staining of lipidic bodies with Nile Red, while in parallel monitoring cell viability. Our results showed that this encapsulation process is essentially a phenomenon of passive diffusion with negligible relevance of active transport. Further, our evidence shows that the major determinant of the encapsulation kinetics is the solubility of the hydrophobe in the cell wall, which is inversely related to partition coefficient (log P).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700