α-Hemolysin nanopore studies reveal strong interactions between biogenic polyamines and DNA hairpins
详细信息    查看全文
  • 作者:Yun Ding ; Aaron M. Fleming ; Cynthia J. Burrows
  • 关键词:α ; Hemolysin ; DNA hairpin ; Spermine ; Spermidine ; Putrescine
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:183
  • 期:3
  • 页码:973-979
  • 全文大小:1,711 KB
  • 参考文献:1.Igarashi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559CrossRef
    2.Thomas T, Thomas TJ (2001) Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell Mol Life Sci 58:244CrossRef
    3.Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem 42:39CrossRef
    4.Minois N, Carmona-Gutierrez D, Madeo F (2011) Polyamines in aging and disease. Aging 3:1
    5.Janne J, Alhonen L, Pietila M, Keinanen TK (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur J Biochem 271:877CrossRef
    6.Tabor H (1962) The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid. Biochemistry 1:496CrossRef
    7.Kabir A, Suresh Kumar GS (2013) Binding of the biogenic polyamines to deoxyribonucleic acids of varying base composition: base specificity and the associated energetics of the interaction. PLoS One 8, e70510CrossRef
    8.Kabir A, Hossain M, Kumar GS (2013) Thermodynamics of the DNA binding of biogenic polyamines: calorimetric and spectroscopic investigations. J Chem Thermodyn 57:445CrossRef
    9.Tajmir-Riahi HA, Ahmed-Ouameur A, Hasni I, Bourassa P, Thomas TJ (2011) Probing DNA and RNA interactions with biogenic and synthetic polyamines. CRC Press, Boca RatonCrossRef
    10.Ouameur AA, Tajmir-Riahi H (2004) Structural analysis of DNA Interactions with biogenic polyamines and cobalt(III)hexamine studied by fourier transform infrared and capillary electrophoresis. J Biol Chem 279:42041CrossRef
    11.Deng H, Bloomfield VA, Benevides JM, Thomas GJ Jr (2000) Structural basis of polyamine–DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res 28:3379CrossRef
    12.Tari LW, Secco AS (1995) Base-pair opening and spermine binding—B-DNA features displayed in the crystal structure of a gal operon fragment: implications for protein-DNA recognition. Nucleic Acids Res 23:2065CrossRef
    13.Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360CrossRef
    14.Gu LQ, Shim JW (2010) Single molecule sensing by nanopores and nanopore devices. Analyst 135:441CrossRef
    15.Maglia G, Heron AJ, Stoddart D, Japrung D, Bayley H (2010) Analysis of single nucleic acid molecules with protein nanopores. Methods Enzymol 475:591CrossRef
    16.Ying YL, Zhang J, Gao R, Long YT (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed Engl 52:13154CrossRef
    17.Song L, Hobaugh M, Shustak C, Cheley S, Bayley H, Gouaux J (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859CrossRef
    18.Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci U S A 93:13770CrossRef
    19.Akeson M, Branton D, Kasianowicz JJ, Brandin E, Deamer DW (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77:3227CrossRef
    20.Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19:248CrossRef
    21.Wolna AH, Fleming AM, Burrows CJ (2014) Single-molecule analysis of thymine dimer-containing G-quadruplexes formed from the human telomere sequence. Biochemistry 53:7484CrossRef
    22.An N, Fleming AM, Middleton EG, Burrows CJ (2014) Single-molecule investigation of G-quadruplex folds of the human telomere sequence in a protein nanocavity. Proc Natl Acad Sci U S A 111:14325CrossRef
    23.An N, Fleming AM, Burrows CJ (2013) Interactions of the human telomere sequence with the nanocavity of the α-Hemolysin ion channel reveal structure-dependent electrical signatures for hybrid folds. J Am Chem Soc 135:8562CrossRef
    24.Shim J, Gu LQ (2012) Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods 57:40CrossRef
    25.Ding Y, Fleming AM, White HS, Burrows CJ (2014) Internal vs fishhook hairpin DNA: unzipping locations and mechanisms in the alpha-hemolysin nanopore. J Phys Chem B 118:12873CrossRef
    26.Jin Q, Fleming AM, Burrows CJ, White HS (2012) Unzipping kinetics of duplex DNA containing oxidized lesions in an alpha-hemolysin nanopore. J Am Chem Soc 134:11006CrossRef
    27.Schibel AEP, Fleming AM, Jin Q, An N, Liu J, Blakemore CP, White HS, Burrows CJ (2011) Sequence-specific single-molecule analysis of 8-oxo-7,8-dihydroguanine lesions in DNA based on unzipping kinetics of complementary probes in ion channel recordings. J Am Chem Soc 133:14778CrossRef
    28.Winters-Hilt S, Vercoutere W, DeGuzman VS, Deamer D, Akeson M, Haussler D (2003) Highly accurate classification of Watson-Crick basepairs on termini of single DNA molecules. Biophys J 84:967CrossRef
    29.Mathé J, Visram H, Viasnoff V, Rabin Y, Meller A (2004) Nanopore unzipping of individual DNA hairpin molecules. Biophys J 87:3205CrossRef
    30.Deamer DW, Vercoutere WA, DeGuzman VS, Lee CC (2006) Sequence-dependent gating of an ion channel by DNA hairpin molecules. Nucleic Acids Res 34:6425CrossRef
    31.Vercoutere WA, Winters-Hilt S, DeGuzman VS, Deamer D, Ridino SE, Rodgers JT, Olsen HE, Marziali A, Akeson M (2003) Discrimination among individual Watson-Crick base pairs at the termini of single DNA hairpin molecules. Nucleic Acids Res 31:1311CrossRef
    32.Wanunu M, Bhattacharya S, Xie Y, Tor Y, Aksimentiev A, Drndic M (2011) Nanopore analysis of individual RNA/antibiotic complexes. ACS Nano 5:9345CrossRef
    33.Yao F, Duan J, Wang Y, Zhang Y, Guo Y, Guo H, Kang X (2015) Nanopore single-molecule analysis of DNA-doxorubicin interactions. Anal Chem 87:338CrossRef
    34.Zhang B, Galusha J, Shiozawa PG, Wang G, Bergren AJ, Jones RM, White RJ, Ervin EN, Cauley CC, White HS (2007) Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. Anal Chem 79:4778CrossRef
    35.White RJ, Ervin EN, Yang T, Chen X, Daniel S, Cremer PS, White HS (2007) Single ion-channel recordings using glass nanopore membranes. J Am Chem Soc 129:11766CrossRef
    36.van Dongen MJP, Mooren MMW, Willems EFA, van der Marel GA, van Boom JH, Wijmenga SS, Hilbers CW (1997) Structural features of the DNA hairpin d(ATCCTA-GTTA-TAGGAT): formation of a G-A Base pair in the loop. Nucleic Acids Res 25:1537CrossRef
  • 作者单位:Yun Ding (1)
    Aaron M. Fleming (1)
    Cynthia J. Burrows (1)

    1. Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT, 84112-0850, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The α-hemolysin (α-HL) nanopore is capable of analyzing DNA as it is electrophoretically driven through the pore. Respective current vs. time (i-t) traces depend on the DNA sequence, its secondary structures, or on the physical conditions of the analysis. The current study describes the analysis of a DNA hairpin with a 5′-extension by applying α-HL nanopores in the presence of the polyamines spermine (Spm), spermidine (Spd), and putrescine (Put) and revealed i-t traces characteristic of the DNA-polyamine complex. Voltage-dependent studies also revealed that the hairpin-Spm complex formed with excess Spm cannot be unzipped and translocated through the pores even if the voltage is increased to 180 mV. The DNA hairpin sample was titrated with Spm, Spd, or Put that showed a dose-dependent response in the characteristic event patterns for hairpins bound to Spm or Spd, but not for Put. Plots of the event types vs. counts were used to calculate binding constants for the Spm or Spd hairpin interactions. The titration also demonstrated that the event rate decreased ~10-fold on increasing the Spm or Spd concentrations from 0 to 4 mM. These observations impose practical limitations on the ability to use Spm or Spd for DNA studies with the α-HL nanopore.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700