Thermal characterization of poly-l-lactide by dielectric analysis and modulated DSC
详细信息    查看全文
  • 作者:C. A. Gracia-Fernández (1)
    S. Gómez-Barreiro (2)
    A. álvarez-García (3)
    J. López-Beceiro (3)
    B. álvarez-García (3)
    S. Zaragoza-Fernández (3)
    R. Artiaga (3)
  • 关键词:Poly ; l ; lactic acid ; DEA ; TMDSC ; Glass transition ; Enthalpic relaxation ; Crystallization
  • 刊名:Journal of Thermal Analysis and Calorimetry
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:116
  • 期:3
  • 页码:1273-1278
  • 全文大小:
  • 参考文献:1. McCrum NG, Read ME, Williams G. Anelastic and dielectric effects in polymeric solids. New York: Wiley; 1967.
    2. Coln MCW, Senturia SD. The application of linear system theory to parametric microsensor. In: Proceedings of Transducers-85. 1985. p. 118-1.
    3. Prime RB. Thermosets. In: Turi EA, editor. Thermal characteristics of polymer materials. 2nd ed. San Diego: Academic Press; 1997. p. 1518-3.
    4. Hunt BJ, James MI. Polymer characterisation. 1st ed. London: Blackie Academic & Professional; 1993. CrossRef
    5. Sheppard NF, Senturia SD. Dielectric properties of bisphenol-a epoxy resins. J Polym Sci Part B Polym Phys. 1989;27:753-2. CrossRef
    6. Senturia SD, Sheppard NF. Dielectric analysis of thermoset cure. In: Du?ek K, editor. Epoxy Resins Compos. IV ed. Berlin: Springer; 1986. p. 1-7. CrossRef
    7. Debye P. Polar molecules. New York: Chemical Catalog Co.; 1929.
    8. Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys. 1941;9:341-1. CrossRef
    9. Davidson DW, Cole RH. Dielectric relaxation in glycerol, propylene glycol, and / n-propanol. J Chem Phys. 1951;19:1484-0. CrossRef
    10. Havriliak S, Negami S. A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci Part C Polym Symp. 2007;14:99-17. CrossRef
    11. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161-10. CrossRef
    12. Atkinson JL, Vyazovkin S. Dynamic mechanical analysis and hydrolytic degradation behavior of linear and branched poly(l -lactide)s and poly(l -lactide-co-glycolide)s. Macromol Chem Phys. 2013;214:835-3. CrossRef
    13. Malmgren T, Mays J, Pyda M. Characterization of poly(lactic acid) by size exclusion chromatography, differential refractometry, light scattering and thermal analysis. J Therm Anal Calorim. 2006;83:35-0. CrossRef
    14. Atkinson JL, Vyazovkin S. Thermal properties and degradation behavior of linear and branched poly(l -lactide)s and poly(l -lactide-co-glycolide)s. Macromol Chem Phys. 2012;213:924-6. CrossRef
    15. Monticelli O, Bocchini S, Gardella L, Cavallo D, Cebe P, Germelli G. Impact of synthetic talc on PLLA electrospun fibers. Eur Polym J. 2013;49:2572-3. CrossRef
    16. Zhou Z. Influence of thermal treatment on the thermal behavior of poly-l -lactide. J Macromol Sci Part B. 2007;46:1247-4. CrossRef
    17. Martinelli A, Calì M, D’Ilario L, Francolini I, Piozzi A. Effect of the nucleation mechanism on complex poly(l -lactide) nonisothermal crystallization process. Part 1: thermal and structural characterization. J Appl Polym Sci. 2011;121:3368-6. CrossRef
    18. Pyda M, Wunderlich B. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules. 2005;38:10472-. CrossRef
    19. Gracia-Fernández CA, Gómez-Barreiro S, López-Beceiro J, Naya S, Artiaga R. New approach to the double melting peak of poly(l -lactic acid) observed by DSC. J Mater Res. 2012;27:1379-2. CrossRef
    20. Sasaki T, Yamauchi N, Irie S, Sakurai K. || Differential scanning calorimetry study on thermal behaviors of freeze-dried poly(l -lactide) from dilute solutions. J Polym Sci Part B. 2005;43:115-4. CrossRef
    21. Pluta M, Jeszka JK, Boiteux G. Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J. 2007;43:2819-5. CrossRef
    22. Sabater i Serra R, Escobar Ivirico JL, Meseguer Due?as JM, Balado AA, Gómez Ribelles JL, Salmerón Sánchez M. Segmental dynamics in poly(ε-caprolactone)/poly(l -lactide) copolymer networks. J Polym Sci Part B Polym Phys. 2009;47:183-3. CrossRef
    23. Arnoult M, Dargent E, Mano JF. Mobile amorphous phase fragility in semi-crystalline polymers: comparison of PET and PLLA. Polymer. 2007;48:1012-. CrossRef
    24. Magoń A, Pyda M. Study of crystalline and amorphous phases of biodegradable poly(lactic acid) by advanced thermal analysis. Polymer. 2009;50:3967-3. CrossRef
    25. Pan P, Zhu B, Inoue Y. Enthalpy relaxation and embrittlement of poly(l -lactide) during physical aging. Macromolecules. 2007;40:9664-1. CrossRef
    26. Vogel H. The law of the relation between the viscosity of liquids and the temperature. Phys Z. 1921;22:645.
    27. Kortaberria G, Marieta C, Jimeno A, Arruti P, Mondragon I. Crystallization of poly(l -lactid acid) monitored by dielectric relaxation spectroscopy and atomic force microscopy. J Microsc. 2006;224:277-9. CrossRef
    28. Nú?ez-Regueira L, Gracia-Fernndez CA, Gómez-Barreiro S. Characterization of a thermoset by thermal analysis techniques: criterion to assign the value of the α-transition temperature by dielectric analysis. J Appl Polym Sci. 2005;96:2027-7. CrossRef
  • 作者单位:C. A. Gracia-Fernández (1)
    S. Gómez-Barreiro (2)
    A. álvarez-García (3)
    J. López-Beceiro (3)
    B. álvarez-García (3)
    S. Zaragoza-Fernández (3)
    R. Artiaga (3)

    1. TA Instruments-Waters Cromatografía, 20108, Alcobendas, Madrid, Spain
    2. Department of Applied Physics, CESUGA, University College of Dublin, Feáns 152, 15190, A Coru?a, Spain
    3. University of A Coru?a, EPS Avda. Mendizábal s/n, 15403, Ferrol, Spain
  • ISSN:1572-8943
文摘
Dielectric analysis (DEA) is a very sensitive technique, which allows for detection of small structural changes at the low scale. An advantage of DEA, with respect to other modulated techniques, is the possibility of using a wider frequency range. Molecular relaxations of the order of only a few nanometers are not observed by any other thermoanalytic method. Nevertheless, these small relaxations involve dipole changes that can be observed by DEA. Thus, this technique is used here, in combination with temperature-modulated differential scanning calorimetry (TMDSC) to obtain insightful information about the thermal transitions of poly-l-lactic acid (PLLA), one of the stereo-isomers of polylactide. Its complex thermal behavior is the subject of ongoing debate, with several overlapping crystallization and melting processes. The combined use of TMDSC and DEA provides a better insight of three important transitions of this polymer: the alpha relaxation, the enthalpic relaxation, and the cold crystallization. The dependences of the enthalpy relaxation on the dynamic glass transition relaxation and on the glass transition as a thermal event are evaluated. On the other hand, it will be shown how the cold crystallization can be identified by TMDSC, and DEA helps us understand the effect of crystallization on the dipole movements. The shape of the dielectric permittivity curve at low frequencies is compared to that of the reversing heat capacity to check whether both signals are sensitive or not to the same events. It is also verified how the experimental results of alpha relaxation of PLLA follow an Arrhenius or a Vogel trend.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700