An improved low-complexity sum-product decoding algorithm for low-density parity-check codes
详细信息    查看全文
  • 作者:Michaelraj Kingston Roberts…
  • 关键词:Computational complexity ; Coding gain ; Fast Fourier transform (FFT) ; Low ; density parity ; check (LDPC) codes ; Sum ; product algorithm (SPA) ; TN911
  • 刊名:Frontiers of Information Technology & Electronic Engineering
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:16
  • 期:6
  • 页码:511-518
  • 全文大小:520 KB
  • 参考文献:Chandrasetty, V.A., Aziz, S.M., 2011. FPGA implementation of a LDPC decoder using a reduced complexity message passing algorithm. J. Netw., 6(1):36-5. [doi:10.4304/jnw.6.1.36-45]
    Chung, S.Y., Forney, G.D., Richardson, T.J., et al., 2001. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett., 5(2):58-0. [doi:10.1109/4234.905935]CrossRef
    Fossorier, M.P.C., Mihaljevic, M., Imai, H., 1999. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans. Commun., 47(5):673-80. [doi:10.1109/26.768759]CrossRef
    Gallager, R.G., 1962. Low-density parity-check codes. IRE Trans. Inform. Theory, 8(1):21-8. [doi:10.1109/TIT.1962.1057683]MATH MathSciNet CrossRef
    Goupil, A., Colas, M., Gelle, G., et al., 2007. FFT-based BP decoding of general LDPC codes over Abelian groups. IEEE Trans. Commun., 55(4):644-49. [doi:10.1109/TCOMM.2007.894089]CrossRef
    He, Y.C., Sun, S.H., Wang, X.M., 2002. Fast decoding of LDPC codes using quantisation. Electron. Lett., 38(4): 189-90. [doi:10.1049/el:20020131]CrossRef
    IEEE, 2009. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems. IEEE Std 802.16-2009. [doi:10.1109/IEEESTD.2009.5062485]
    IEEE, 2015. IEEE Draft Standard for Information Technology-Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE P802.11-REVmc/D4.0.
    Jiang, X., Lee, M.H., Qi, J., 2012. Improved progressive edge-growth algorithm for fast encodable LDPC codes. EURASIP J. Wirel. Commun. Netw., 2012:178.1-78.10. [doi:10.1186/1687-1499-2012-178]CrossRef
    Johnson, S.G., Frigo, M., 2007. A modified split-radix FFT with fewer arithmetic operations. IEEE Trans. Signal Process., 55(1):111-19. [doi:10.1109/TSP.2006.882087]MathSciNet CrossRef
    Lee, M.H., Han, J.H., Sunwoo, M.H., 2008. New simplified sum-product algorithm for low complexity LDPC decoding. IEEE Workshop on Signal Processing Systems, p.61-6. [doi:10.1109/SIPS.2008.4671738]
    MacKay, D.J.C., Neal, R.M., 1997. Near Shannon limit performance of low density parity check codes. Electron. Lett., 33(6):457-58. [doi:10.1049/el:19970362]CrossRef
    Morello, A., Mignone, V., 2006. DVB-S2: the second generation standard for satellite broad-band services. Proc. IEEE, 94(1):210-27. [doi:10.1109/JPROC.2005.861013]CrossRef
    Papaharalabos, S., Sweeney, P., Evans, B.G., et al., 2007. Modified sum-product algorithm for decoding low-density parity-check codes. IET Commun., 1(3):294-00. [doi:10.1049/iet-com:20060173]CrossRef
    Richardson, T.J., Urbanke, R.L., 2001. The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inform. Theory, 47(2):599-18. [doi:10.1109/18.910577]MATH MathSciNet CrossRef
    Safarnejad, L., Sadeghi, M.R., 2012. FFT based sum-product algorithm for decoding LDPC lattices. IEEE Commun. Lett., 16(9):1504-507. [doi:10.1109/LCOMM.2012.073112.120996]CrossRef
    Sorensen, H.V., Heideman, M., Burrus, C.S., 1986. On computing the split-radix FFT. IEEE Trans. Acoust. Speech Signal Process., 34(1):152-56. [doi:10.1109/TASSP.1986.1164804]CrossRef
    Yuan, L., Tian, X., Chen, Y., 2011. Pruning split-radix FFT with time shift. Proc. Int. Conf. on Electronics, Communications and Control, p.1581-586. [doi:10.1109/ICECC.2011.6066654]
  • 作者单位:Michaelraj Kingston Roberts (1)
    Ramesh Jayabalan (1)

    1. Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore, 641004, India
  • 刊物类别:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization
  • 刊物主题:Computer Science, general; Electrical Engineering; Computer Hardware; Computer Systems Organization and Communication Networks; Electronics and Microelectronics, Instrumentation; Communications Engine
  • 出版者:Zhejiang University Press
  • ISSN:2095-9230
文摘
In this paper, an improved low-complexity sum-product decoding algorithm is presented for low-density parity-check (LDPC) codes. In the proposed algorithm, reduction in computational complexity is achieved by utilizing fast Fourier transform (FFT) with time shift in the check node process. The improvement in the decoding performance is achieved by utilizing an optimized integer constant in the variable node process. Simulation results show that the proposed algorithm achieves an overall coding gain improvement ranging from 0.04 to 0.46 dB. Moreover, when compared with the sum-product algorithm (SPA), the proposed decoding algorithm can achieve a reduction of 42%-7% of the total number of arithmetic operations required for the decoding process. Key words Computational complexity Coding gain Fast Fourier transform (FFT) Low-density parity-check (LDPC) codes Sum-product algorithm (SPA)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700