Mercury transfer from soil to olive trees. A comparison of three different contaminated sites
详细信息    查看全文
  • 作者:Pablo L. Higueras ; José Á. Amorós…
  • 关键词:Mercury ; Plant uptake ; Chlor ; alkali ; Foliar uptake ; Flix ; Almadén ; Jódar
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:7
  • 页码:6055-6061
  • 全文大小:256 KB
  • 参考文献:Amorós JA, Perez-De-Los-Reyes C, Garcia-Navarro FJ, Bravo S, Chacon JL, Martinez J, Jimenez R (2013) Bioaccumulation of mineral elements in grapevine varieties cultivated in La Mancha. J Plant Nutr Soil Sci 176(6):843–850CrossRef
    Amorós JA, Esbrí JM, Perez-De-Los-Reyes C, Garcia-Navarro FJ, Bravo S, Villaseñor MB, Higueras P (2014) Variation in mercury and other trace elements contents in soil and vine leaves from the Almadén Hg-mining district. J Soils Sediments 14:773–777CrossRef
    Bargagli R (1995) The elemental composition of vegetation and the possible incidence of soil contamination of samples. Sci Total Environ 176:121–128CrossRef
    Barranco D, Fernández-Escobar R, Rallo L (2004) Olive growing, 5th edn. Mundiprensa SA, Madrid (In Spanish)
    Bernaus A, Gaona X, Esbrí JM, Higueras P, Falkenberg G, Valiente M (2006) Microprobe techniques for speciation analysis and geochemical characterization of mine environments: the mercury district of Almadén in Spain. Environ Sci Technol 40(13):4090–4095CrossRef
    Biester H, Scholz C (1997) Determination of mercury binding forms in contaminated soils: mercury pyrolysis versus sequential extractions. Environ Sci Technol 31(1):233–239CrossRef
    Bould C (1966) In: Childers NF (ed) Leaf analysis of deciduous trees. Fruit nutrition, horticultural publications, New Jersey
    Carocci A, Rovito N, Sinicropi MS, Genchi G (2014) Mercury toxicity and neurodegenerative effects (review). Rev Environ Contam Toxicol 229:1–18
    Carrasco-Gil S, Siebner H, Leduc DL, Webb SM, Millán R, Andrews JC, Hernández LE (2013) Mercury localization and speciation in plants grown hydroponically or in a natural environment. Environ Sci Technol 47(7):3082–3090
    Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36(8):609–662CrossRef
    Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622CrossRef
    Esbrí JM, Bernaus A, Ávila M, Kocman D, García-Noguero EM, Guerrero B, Gaona X, Alvarez R, Perez-Gonzalez G, Valiente M, Higueras P, Horvat M, Loredo J (2010) XANES speciation of mercury in three mining districts—Almadén, Asturias (Spain), Idria (Slovenia). J Synchrotron Radiat 17(2):179–186CrossRef
    Esbrí JM, López-Berdonces MA, Fernández-Calderón S, Higueras P, Díez S (2014) Mercury atmospheric pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis. Environ Sci Pollut Res. doi:10.​1007/​s11356-014-3305-x
    Fay L, Gustin M (2007) Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water Air Soil Pollut 181:373–384CrossRef
    Fernández-Escobar R, Moreno R, García-Creus M (1999) Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle. Sci Horticulturae 82(1–2):25–45CrossRef
    Gray JE, Hines ME, Higueras PL, Adatto I, Lasorsa BK (2004) Mercury speciation and microbial transformations in mine wastes, stream sediments, and surface waters at the Almadén mining district, Spain. Environ Sci Technol 38(16):4285–4292CrossRef
    Guédron S, Grangeon S, Jouravel G, Charlet L, Sarret G (2013) Atmospheric mercury incorporation in soils of an area impacted by a chlor-alkali plant (Grenoble, France): contribution of canopy uptake. Sci Total Environ 445–446:356–364CrossRef
    Gupta SK, Vollmer MK, Krebs R (1996) The importance of mobile, mobilisable and pseudo total heavy metal fractions in soil for three-level risk assessment and risk management. Sci Total Environ 178:11–20CrossRef
    Hernández A, Jébrak M, Higueras P, Oyarzun R, Morata D, Munhá J (1999) The Almadén mercury mining district, Spain. Miner Deposita 34:539–548CrossRef
    Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in the Almadén mining district, Spain. J Geochem Explor 80:95–104CrossRef
    Higueras P, Oyarzun R, Lillo J, Sánchez-Hernández JC, Molina JA, Esbrí JM, Lorenzo S (2006) The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites. Sci Total Environ 356:112–124CrossRef
    Higueras P, Amorós JA, Esbrí JM, García-Navarro FJ, Pérez de los Reyes C, Moreno G (2012) Time and space variations in mercury and other trace element contents in olive tree leaves from the Almadén Hg-mining district. J Geochem Explor 123:143–151CrossRef
    Higueras P, Esbrí JM, Oyarzun R, Llanos W, Martínez-Coronado A, Lillo J, López-Berdonces MA, García-Noguero EM (2013) Industrial and natural sources of gaseous elemental mercury in the Almadén District (Spain): an updated report on this issue after the cease of mining and metallurgical activities in 2003 and major land reclamation works. Environ Res 125:197–208CrossRef
    Higueras P, Fernández-Martínez R, Esbrí JM, Rucandio I, Loredo J, Ordóñez A, and Álvarez R (2015) Mercury soil pollution in Spain: a review. In E. Jiménez et al. (eds), Environment, energy and climate change I: environmental chemistry of pollutants and wastes, 32:175--205. doi:10.​1007/​698_​2014_​280
    Huckabee JW, Sanz Diaz F, Janzen SA, Solomon J (1983) Distribution of mercury in vegetation at Almadén, Spain. Environ Pollut A 30(3):211–224CrossRef
    Inácio MM, Pereira V, Pinto MS (1998) Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geoderma 85(4):325–339CrossRef
    Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, p 413
    Llanos W, Higueras P, Oyarzun R, Esbrí JM, López-Berdonces MA, García-Noguero EM, Martínez-Coronado A (2010) The MERSADE (European Union) project: testing procedures and environmental impact for the safe storage of liquid mercury in the Almadén district, Spain. Sci Total Environ 408(20):4901–4905CrossRef
    Llanos W, Kocman D, Higueras P, Horvat M (2011) Mercury emissions and dispersion models from soils contaminated by cinnabar mining and metallurgy. J Environ Monitor 13(12):3460–3468CrossRef
    López-Berdonces MA, Esbrí JM, Amorós JA, Lorenzo S, Fernández-Calderón S, Higueras P, Perez-de-los-Reyes C (2014) Hg contents in soils and olive-tree (Olea europea, L.) leaves from an area affected by elemental mercury pollution (Jódar, SE Spain). Geophysical Research Abstracts (16) EGU2014-7843 http://​meetingorganizer​.​copernicus.​org/​EGU2014/​EGU2014-7843.​pdf . Accessed 12 December 2014
    Madejón P, Marañón T, Murillo JM (2006) Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees. Sci Total Environ 355:187–203CrossRef
    Marschner P (2012) Marschner’s mineral nutrition of higher plants (3th edition). Elsevier, Germany
    Martínez-Coronado A, Oyarzun R, Esbrí JM, Llanos W, Higueras P (2011) Sampling high to extremely high Hg concentrations at the Cerco de Almadenejos, Almadén mining district (Spain): the old metallurgical precinct (1794 to 1861 AD) and surrounding areas. J Geochem Explor 109(1–3):70–77CrossRef
    Millán R, Gamarra R, Schmid T, Sierra MJ, Quejido AJ, Sánchez DM, Cardona AI, Fernandez M, Vera R (2006) Mercury content in vegetation and soils of the Almadén mining area (Spain). Sci Total Environ 368(1):79–87CrossRef
    Molina JA, Oyarzun R, Esbrí JM, Higueras P (2006) Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth. Environ Geochem Health 28:487–498CrossRef
    Moreno T, Higueras P, Jones T, McDonald I, Gibbons W (2005) Size fractionation in mercury-bearing airborne particles (HgPM10) at Almadén, Spain: implications for inhalation hazards around old mines. Atmos Environ 39:6409–6419CrossRef
    Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Pearson Ed, Edimburgh. doi: 10.​1016/​0016-7037(95)90141-8
    Sánchez DM, Quejido AJ, Fernández M, Hernández C, Schmid T, Millán R, González M, Aldea M, Martin R, Morante R (2005) Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Anal Bioanal Chem 381(8):1507–1513CrossRef
    Senesi GS, Baldassare G, Senesi N, Radina B (1999) Trace element inputs into soils by anthropogenic activities and implications for human health. Chemosphere 39:343–377CrossRef
    Sholupov S, Pogarev S, Ryzhov V, Mashyanov N, Stroganov A (2004) Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process Technol 85:473–485CrossRef
    Vavoulidou E, Avramides EJ, Papadopoulos P, Dimirkou A (2004) Trace metals in different crop-cultivation systems in Greece. Water Air Soil Pollut 4(2–3):631–640CrossRef
    Wild A (1992) Soil conditions and plant development as Russell. Ed. Mundiprensa, Madrid, 1045 pp. (In Spanish)
  • 作者单位:Pablo L. Higueras (1)
    José Á. Amorós (2)
    José Maria Esbrí (1)
    Caridad Pérez-de-los-Reyes (2)
    Miguel A. López-Berdonces (1)
    Francisco J. García-Navarro (2)

    1. Departamento de Ingeniería Geológica y Minera and Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, E.I.M.I. Almadén, 13400, Almadén, Ciudad Real, Spain
    2. Escuela de Ingenieros Agrónomos de Ciudad Real and Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071, Ciudad Real, Spain
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
Mercury contents in soil and olive tree leaves have been studied in 69 plots around three different source areas of this element in Spain: Almadén (Ciudad Real), Flix (Tarragona) and Jódar (Jaén). Almadén was the world’s largest cinnabar (HgS) mining district and was active until 2003, Flix is the oldest Spanish chlor-alkali plant (CAP) and has been active from 1898 to the present day and Jódar is a decommissioned CAP that was active for 14 years (1977–1991). Total mercury contents have been measured by high-frequency modulation atomic absorption spectrometry with Zeeman effect (ZAAS-HFM) in the soils and olive tree leaves from the three studied areas. The average soil contents range from 182 μg kg−1 in Flix to 23,488 μg kg−1 in Almadén, while the average leaf content ranges from 161 μg kg−1 in Jódar to 1213 μg kg−1 in Almadén. Despite the wide range of data, a relationship between soil–leaf contents has been identified: in Almadén and Jódar, multiplicative (bilogarithmic) models show significant correlations (R = 0.769 and R = 0.484, respectively). Significant correlations were not identified between soil and leaf contents in Flix. The continuous activity of the Flix CAP, which remains open today, can explain the different uptake patterns for mercury, which is mainly atmospheric in origin, in comparison to the other two sites, where activity ceased more than 10 years ago and only soil uptake patterns based on the Michaelis–Menten enzymatic model curve are observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700