Implication of sortase-dependent proteins of Streptococcus thermophilus in adhesion to human intestinal epithelial cell lines and bile salt tolerance
详细信息    查看全文
  • 作者:Mounira Kebouchi ; Wessam Galia ; Magali Genay…
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:100
  • 期:8
  • 页码:3667-3679
  • 全文大小:669 KB
  • 参考文献:Augeron C, Laboisse CL (1984) Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res 44:3961–3969PubMed
    Bajor A, Gillberg PG, Abrahamsson H (2010) Bile acids: short and long term effects in the intestine. Scand J Gastroenterol 45:645–664CrossRef PubMed
    Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651CrossRef PubMed
    Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiol Read Engl 152:273–280CrossRef
    Boke H, Aslim B, Alp G (2010) The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria. Arch Biol Sci 62:323–e328CrossRef
    Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Mausy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558CrossRef PubMed
    Bonifait L, de la Cruz Dominguez-Punaro M, Vaillancourt K, Bart C, Slater J, Frenette M, Gottschalk M, Grenier D (2010) The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis. BMC Microbiol 10:42CrossRef PubMed PubMedCentral
    Brigidi P, Swennen E, Vitali B, Rossi M, Matteuzzi D (2003) PCR detection of Bifidobacterium strains and Streptococcus thermophilus in feces of human subjects after oral bacteriotherapy and yogurt consumption. Int J Food Microbiol 81:203–209CrossRef PubMed
    Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351CrossRef PubMed PubMedCentral
    Bustos AY, Raya R, de Valdez GF, Taranto MP (2011) Efflux of bile acids in Lactobacillus reuteri is mediated by ATP. Biotechnol Lett 33:2265–2269CrossRef PubMed
    Call EK, Klaenhammer TR (2013) Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 4:73PubMed PubMedCentral
    Call EK, Goh YJ, Selle K, Klaenhammer TR, O’Flaherty S (2015) Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiol Read Engl 161:311–321
    Couvigny B, Thérial C, Gautier C, Renault P, Briandet R, Guédon E (2015) Streptococcus thermophilus biofilm formation: a remnant trait of ancestral commensal life? PLoS ONE 10(6):e0128099. doi:10.​1371/​journal.​pone.​0128099 CrossRef PubMed PubMedCentral
    Dandoy D, Fremaux C, Henry de Frahan M, Horvath P, Boyaval P, Hols P, Fontaine L (2011) The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microb Cell Factories 10:S21CrossRef
    Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P (2010) Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl Environ Microbiol 76:451–460CrossRef PubMed PubMedCentral
    Duary RK, Batish VK, Grover S (2012) Relative gene expression of bile salt hydrolase and surface proteins in two putative indigenous Lactobacillus plantarum strains under in vitro gut conditions. Mol Biol Rep 39:2541–2552CrossRef PubMed
    EFSA 2010 http://​www.​efsa.​europa.​eu/​fr/​efsajournal/​doc/​1763 . pdf.
    Elli M, Callegari ML, Ferrari S, Bessi E, Cattivelli D, Soldi S, Morelli L, Goupil Feuillerat N, Antoine JM (2006) Survival of yogurt bacteria in the human gut. Appl Environ Microbiol 72:5113–5117CrossRef PubMed PubMedCentral
    FDA (2002) “GRN No.49 Bifidobacterium lactis strain Bb12 and Streptococcus thermophilus strain Th4 ” GRAS Notice inventory.
    FDA (2012) “GRN No.378 Cultured [dairy sources, sugars, wheat, malt, and fruit- and vegetable based sources] fermented by [Streptococcus thermophilus, Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus paracasei subsp. paracasei, Lactobacillus plantarum, Lactobacillus sakei, Lactobacillus bulgaricus and Proprionibacterium freudenreichii subsp. shermanii or mixtures of these strains] ” GRAS Notice Inventory.
    Fernandez-Espla MD, Garault P, Monnet V, Rul F (2000) Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization. Appl Environ Microbiol 66:4772–4778CrossRef PubMed PubMedCentral
    Floch MH, Binder HJ, Filburn B, Gershengoren W (1972) The effect of bile acids on intestinal microflora. Am J Clin Nutr 25:1418–1426PubMed
    Freitas M, Cayuela C (2000) Microbial modulation of host intestinal glycosylation patterns. Microb Ecol Health Dis 12. doi:10.​3402/​mehd.​v12i2.​8066 .
    Goh YJ, Goin C, O’Flaherty S, Altermann E, Hutkins R (2011) Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Microb Cell Fact 10(Suppl 1):S22. doi:10.​1186/​1475-2859-10-S1-S22 CrossRef PubMed PubMedCentral
    Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, N. Y
    Habimana O, Le Goff C, Juillard V, Bellon-Fontaine MN, Buist G, Kulakauskas S, Briandet R (2007) Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7:36CrossRef PubMed PubMedCentral
    Hafeez Z, Cakir-Kiefer C, Girardet JM, Jardin J, Perrin C, Dary A, Miclo L (2013) Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus. Appl Microbiol Biotechnol 97:9787–9799CrossRef PubMed
    Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, Decaris B, Bolotin A, Delorme C, Ehrlich SD, Guédon E, MonnetV RP, Kleerebezem M (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463PubMed
    Hu Q, Liu P, Yu Z, Zhao G, Li J, Teng L, Zhou M, Bei W, Chen H, Jin M (2010) Identification of a cell wall-associated subtilisin-like serine protease involved in the pathogenesis of Streptococcus suis serotype 2. Microb Pathog 48:103–109CrossRef PubMed
    Iyer R, Tomar SK, Kapila S, Mani J, Singh R (2010) Probiotic properties of folate producing Streptococcus thermophilus strains. Food Res Int 43:103–110CrossRef
    Jarry A, Merlin D, Velcich A, Hopfer U, Augenlicht LH, Laboisse CL (1994) Interferon-gamma modulates cAMP-induced mucin exocytosis without affecting mucin gene expression in a human colonic goblet cell line. Eur J Pharmacol 267:95–103CrossRef PubMed
    Jensen H, Roos S, Jonsson H, Rud I, Grimmer S, van Pijkeren JP, Britton RA, Axelsson L (2014) Role of Lactobacillus reuteri cell and mucus-binding protein A (CmbA) in adhesion to intestinal epithelial cells and mucus in vitro. Microbiol Read Engl 160:671–681CrossRef
    Juge N (2012) Microbial adhesins to gastrointestinal mucus. Trends Microbiol 2:30–39CrossRef
    Kolling GL, Wu M, Warren CA, Durmaz E, Klaenhammer TR, Guerrant RL (2012) Lactic acid production by Streptococcus thermophilus alters Clostridium difficile infection and in vitro Toxin A production. Gut Microbes 3:523–529CrossRef PubMed PubMedCentral
    Koskenniemi K, Laakso K, Koponen J, Kankainen M, Greco D, Auvinen P, Savijoki K, Nyman TA, Surakka A, Salusjärvi T, Vos WM, Tynkkynen S, Kalkkinen N, Varmanen P (2011) Proteomics and transcriptomics characterization of bile stress response in probiotic Lactobacillus rhamnosus GG. Mol Cell Proteomics MCP 10:M110.002741CrossRef PubMed
    Lalioui L, Pellegrini E, Dramsi S, Baptista M, Bourgeois N, Doucet-Populaire F, Rusniok C, Zouine M, Glaser P, Kunst F, Poyart C, Trieu-Cuot T (2005) The SrtA Sortase of Streptococcus agalactiae is required for cell wall anchoring of proteins containing the LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine. Infect Immun 73:3342–3350CrossRef PubMed PubMedCentral
    Laparra JM, Sanz Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49:695–701CrossRef PubMed
    Lebeer S, Vanderleyden J, De Keersmaecker SCJ (2010) Adaptation factors of the probiotic Lactobacillus rhamnosus GG. Benef Microbes 1:335–342CrossRef PubMed
    Lecomte X, Gagnaire V, Briard-Bion V, Jardin J, Lortal S, Dary A, Genay M (2014) The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface. Microb Cell Factories 13:82CrossRef
    Lenaerts K, Bouwman FG, Lamers WH, Renes J, Mariman EC (2007) Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics 8:91CrossRef PubMed PubMedCentral
    Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50:6334–6343PubMed
    Liévin-Le Moal V, Servin AL (2013) Pathogenesis of human enterovirulent bacteria: lessons from cultured, fully differentiated human colon cancer cell lines. Microbiol Mol Biol Rev 77:380–439CrossRef PubMed PubMedCentral
    Lukić J, Strahinić I, Jovčić B, Filipić B, Topisirović L, Kojić M, Begović J (2012) Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. Appl Environ Microbiol 78:7993–8000CrossRef PubMed PubMedCentral
    Mackenzie DA, Jeffers F, Parker ML, Vibert-Vallet A, Bongaerts RJ, Roos S, Walter J, Juge N (2010) Strain-specific diversity of mucus-binding proteins in the adhesion and aggregation properties of Lactobacillus reuteri. Microbiol Read Engl 156:3368–3378CrossRef
    Maguin E, Prevost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178:931–935PubMed PubMedCentral
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci 103:15611–15616CrossRef PubMed PubMedCentral
    Marraffini LA, Dedent AC, Schneewind O (2006) Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev MMBR 70:192–221CrossRef PubMed
    Mater DDG, Bretigny L, Firmesse O, Flores MJ, Mogenet A, Bresson JL, Corthier G (2005) Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt. FEMS Microbiol Lett 250:185–187CrossRef PubMed
    Moghimipour E, Ameri A, Handali S (2015) Absorption-enhancing effects of bile salts. Mol Basel Switz 20:14451–14473
    Moschioni M, Pansegrau W, Barocchi MA (2010) Adhesion determinants of the Streptococcus species. Microbial Biotechnol 3:370–388CrossRef
    Mozzi F, Gerbino E, Font de Valdez G, Torino MI (2009) Functionality of exopolysaccharides produced by lactic acid bacteria in an in vitro gastric system. J Appl Microbiol 107:56–64CrossRef PubMed
    Muñoz-Provencio D, Rodríguez-Díaz J, Collado MC, Langella P, Bermúdez-Humarán LG, Monedero V (2012) Functional analysis of the Lactobacillus casei BL23 sortases. Appl Environ Microbiol 78:8684–8693CrossRef PubMed PubMedCentral
    Naidu AS, Bidlack WR, Clemens RA (1999) Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39:13–126CrossRef PubMed
    Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci USA 107:454–459CrossRef PubMed PubMedCentral
    Palencia PF, de López P, Corbí AL, Peláez C, Requena T (2008) Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol 227:1475–1484CrossRef
    Pfeiler EA, Azcarate-Peril MA, Klaenhammer TR (2007) Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol 189:4624–4634CrossRef PubMed PubMedCentral
    Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, Lacroix B, Simon-Assmann P, Haffen K, Fogh J, Zweibaum A (1983) Enterocyte-like differentiation and polarizationof the human colon carcinoma cell line caco-2 in culture. Biol Cell 47:323–330
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRef PubMed PubMedCentral
    Rabot S, Rafter J, Rijkers GT, Watzl B, Antoine JM (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: impact of probiotics on digestive system metabolism. J Nutr 140:677S–689SCrossRef PubMed
    Remus DM, Bongers RS, Meijerink M, Fusetti F, Poolman B, Vos P, de Wells JM, Kleerebezem M, Bron PA (2013) Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195:502–509CrossRef PubMed PubMedCentral
    Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997CrossRef PubMed PubMedCentral
    Rizkalla SW, Luo J, Kabir M, Chevalier A, Pacher N, Slama G (2000) Chronic consumption of fresh but not heated yogurt improves breath-hydrogen status and short-chain fatty acid profiles: a controlled study in healthy men with or without lactose maldigestion. Am J Clin Nutr 72:1474–1479PubMed
    Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiol Read Engl 148:433–442CrossRef
    Ruiz L, Margolles A, Sánchez B (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396CrossRef PubMed PubMedCentral
    Savaiano DA (2014) Lactose digestion from yogurt: mechanism and relevance. Am J Clin Nutr 99:1251S–5SCrossRef PubMed
    Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ, Roy NC (2013) The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013:237921CrossRef PubMed PubMedCentral
    Taranto MP, Perez-Martinez G, Font de Valdez G (2006) Effect of bile acid on the cell membrane functionality of lactic acid bacteria for oral administration. Res Microbiol 157:720–725CrossRef PubMed
    Terzaghi BE, Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol 29:807–813PubMed PubMedCentral
    Turpin W, Humblot C, Noordine ML, Thomas M, Guyot JP (2012) Lactobacillaceae and cell adhesion: genomic and functional screening. PloS One 7:e38034CrossRef PubMed PubMedCentral
    Uriot O, Galia W, Awussi A A, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y (2015) Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol http://​dx.​doi.​org/​ 10.​1016/​j.​fm . 2015.05.007.
    Van Klinken BJ, Oussoren E, Weenink JJ, Strous GJ, Büller HA, Dekker J, Einerhand AW (1996) The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj J 13:757–768CrossRef PubMed
    Van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O’Mahony L, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:4143–4153CrossRef PubMed PubMedCentral
    Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khlebnikov A, Johan ET, Vlieg VH, Punit S, Glickman JN, Onderdonk A, Glimcher LH, Garett WS (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA 107:18132–18137CrossRef PubMed PubMedCentral
    Velcich A, Palumbo L, Jarry A, Laboisse C, Racevskis J, Augenlicht L (1995) Patterns of expression of lineage-specific markers during the in vitro-induced differentiation of HT29 colon carcinoma cells. Cell Growth Differ Mol Biol J Am Assoc Cancer Res 6:749–757
    Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904CrossRef
    Von Ossowski I, Satokari R, Reunanen J, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, de Vos WM, Palva A (2011) Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 77:4465–4472
    Wang C, Li M, Feng Y, Zheng F, Dong Y, Pan X, Cheng G, Dong R, Hu D, Feng X, Ge J, Liu D, Wang J, Cao M, Hu F, Tang J (2009) The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol 191:23–33CrossRef PubMed
    Weiss G, Jespersen L (2010) Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. J Mol Microbiol Biotechnol 18:206–214CrossRef PubMed
    Zhang Q, Yang B, Brashears MM, Yu Z, Zhao M, Liu N, Li Y (2014) Influence of casein hydrolysates on exopolysaccharide synthesis by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. J Sci Food Agric 94:1366–1372CrossRef PubMed
    Ziar H, Gérard P, Riazi A (2014) Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy-related bacteria. J Sci Food Agric 94:1184–1190CrossRef PubMed
  • 作者单位:Mounira Kebouchi (1) (2)
    Wessam Galia (1) (2)
    Magali Genay (1) (2)
    Claire Soligot (1) (2)
    Xavier Lecomte (1) (2)
    Ahoefa Ablavi Awussi (1) (2)
    Clarisse Perrin (1) (2)
    Emeline Roux (1) (2)
    Annie Dary-Mourot (1) (2)
    Yves Le Roux (1) (2)

    1. Université de Lorraine, Unité de Recherche « Animal et Fonctionnalités des Produits Animaux» (UR AFPA), Équipe « Protéolyse et Biofonctionnalités des Protéines et des Peptides » (PB2P), Vandœuvre-lès-Nancy, 54506, France
    2. INRA, Unité de Recherche « Animal et Fonctionnalités des Produits Animaux » (UR AFPA), Unité Sous Contrat 340, Vandœuvre-lès-Nancy, 54506, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
Streptococcus thermophilus (ST) is a lactic acid bacterium widely used in dairy industry and displays several properties which could be beneficial for host. The objective of this study was to investigate, in vitro, the implication of sortase A (SrtA) and sortase-dependent proteins (SDPs) in the adhesion of ST LMD-9 strain to intestinal epithelial cells (IECs) and resistance to bile salt mixture (BSM; taurocholoate, deoxycholate, and cholate). The effect of mutations in prtS (protease), mucBP (MUCin-Binding Protein), and srtA genes in ST LMD-9 in these mechanisms were examined. The HT29-MTX, HT29-CL.16E, and Caco-2 TC7 cell lines were used. HT29-MTX and HT29-CL.16E cells express different mucins found in the gastro intestinal tract; whereas, Caco-2 TC7 express cell surface proteins found in the small intestine. All mutants showed different adhesion profiles depending on cell lines. The mutation in genes srtA and mucBP leads to a significant decrease in LMD-9 adhesion capacity to Caco-2 TC7 cells. A mutation in mucBP gene has also shown a significant decrease in LMD-9 adhesion capacity to HT29-CL.16E cells. However, no difference was observed using HT29-MTX cells. Furthermore, ST LMD-9 and srtA mutant were resistant to BSM up to 3 mM. Contrariwise, no viable bacteria were detected for prtS and mucBP mutants at this concentration. Two conclusions could be drawn. First, SDPs could be involved in the LMD-9 adhesion depending on the cell lines indicating the importance of eukaryotic-cell surface components in adherence. Second, SDPs could contribute to resistance to bile salts probably by maintaining the cell membrane integrity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700