The Native Plasmid pML21 Plays a Role in Stress Tolerance in Enterococcus faecalis ML21, as Analyzed by Plasmid Curing Using Plasmid Incompatibility
详细信息    查看全文
  • 作者:Fang-Lei Zuo ; Li-Li Chen ; Zhu Zeng ; Xiu-Juan Feng…
  • 关键词:Enterococcus faecalis ; Native plasmid ; Incompatibility ; Plasmid curing ; Stress tolerance
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:178
  • 期:3
  • 页码:451-461
  • 全文大小:729 KB
  • 参考文献:1.Franz, C. M. A. P., Huch, M., Abriouel, H., Holzapfel, W., & Gálvez, A. (2011). Enterococci as probiotics and their implications in food safety. International Journal of Food Microbiology, 151, 125–140.CrossRef
    2.Paulsen, I. T., Banerjei, L., Myers, G. S. A., Nelson, K. E., Seshadri, R., Read, T. D., Fouts, D. E., Eisen, J. A., Gill, S. R., Heidelberg, J. F., Tettelin, H., Dodson, R. J., Umayam, L., Brinkac, L., Beanan, M., Daugherty, S., DeBoy, R. T., Durkin, S., Kolonay, J., Madupu, R., Nelson, W., Vamathevan, J., Tran, B., Upton, J., Hansen, T., Shetty, J., Khouri, H., Utterback, T., Radune, D., Ketchum, K. A., Dougherty, B. A., & Fraser, C. M. (2003). Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science, 299, 2071–2074.CrossRef
    3.Manson, J. M., Hancock, L. E., & Gilmore, M. S. (2010). Mechanism of chromosomal transfer of Enterococcus faecalis pathogenicity island, capsule, antimicrobial resistance, and other traits. Proceedings of the National Academy of Sciences of the United States of America, 107, 12269–12274.CrossRef
    4.Jensen, L. B., Garcia-Migura, L., Valenzuela, A. J. S., Lohr, M., Hasmana, H., & Aarestrupa, F. M. (2010). A classification system for plasmids from enterococci and other Gram-positive bacteria. Journal of Microbiological Methods, 80, 25–43.CrossRef
    5.Izquierdo, E., Wagner, C., Marchioni, E., Aoude-Werner, D., & Ennahar, S. (2009). Enterocin 96, a novel class II bacteriocin produced by Enterococcus faecalis WHE 96, isolated from Munster cheese. Applied and Environmental Microbiology, 75, 4273–4276.CrossRef
    6.Tomita, H., Fujimoto, S., Tanimoto, K., & Ike, Y. (1996). Cloning and genetic organization of the bacteriocin 31 determinant encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pYI17. Journal of Bacteriology, 178, 3585–3593.
    7.Hirt, H., Manias, D. A., Bryan, E. M., Klein, J. R., Marklund, J. K., Staddon, J. H., Paustian, M. L., Kapur, V., & Dunny, G. M. (2005). Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. Journal of Bacteriology, 187, 1044–1054.CrossRef
    8.Moritz, E. M., & Hergenrother, P. J. (2007). Toxin-antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proceedings of the National Academy of Sciences of the United States of America, 104, 311–316.CrossRef
    9.Hayes, F. (2003). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 301, 1496–1499.CrossRef
    10.Mutschler, H., & Meinhart, A. (2011). ε/ζ systems: their role in resistance, virulence, and their potential for antibiotic development. Journal of Molecular Medicine, 89, 1183–1194.CrossRef
    11.Meinhart, A., Alonso, J. C., Strater, N., & Saenger, W. (2003). Crystal structure of the plasmid maintenance system ε/ζ: functional mechanism of toxin ζ and inactivation by ε2ζ2 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 100, 1661–1666.CrossRef
    12.Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National Academy of Sciences of the United States of America, 98, 14328–14333.CrossRef
    13.Christensen, S. K., Pedersen, K., Hansen, F. G., & Gerdes, K. (2003). Toxin-antitoxin loci as change-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. Journal of Molecular Biology, 332, 809–819.CrossRef
    14.Engelberg-Kulka, H., Hazan, R., & Amitai, S. (2005). mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. Journal of Cell Science, 118, 4327–4332.CrossRef
    15.Zuo, F. L., Feng, X. J., Sun, X. F., Du, C., & Chen, S. W. (2013). Characterization of a plasmid pML21 of Enterococcus faecalis ML21 from koumiss. Current Microbiology, 66, 103–105.CrossRef
    16.McHugh, G. L., & Swartz, M. N. (1977). Elimination of plasmids from several bacterial species by novobiocin. Antimicrobial Agents and Chemotherapy, 12, 423–426.CrossRef
    17.Keyhani, J., Keyhani, E., Attar, F., & Haddadi, A. (2006). Sensitivity to detergents and plasmid curing in Enterococcus faecalis. Journal of Industrial Microbiology & Biotechnology, 33, 238–242.CrossRef
    18.Ni, B., Du, Z., & Guo, Z. (2008). Curing of four different plasmids in Yersinia pestis using plasmid incompatibility. Letters in Applied Microbiology, 47, 235–240.CrossRef
    19.Wang, H., Liu, X., Feng, E., Zhu, L., Wang, D., Liao, X., & Wang, H. (2011). Curing the plasmid pXO2 from Bacillus anthracis A16 using plasmid incompatibility. Current Microbiology, 62, 703–709.CrossRef
    20.Liu, X., Wang, D., Wang, H., Feng, E., & Zhu, L. (2012). Curing of plasmid pXO1 from Bacillus anthracis using plasmid incompatibility. PLoS ONE, 7, e29875.CrossRef
    21.Posno, M., Leer, R. J., van Luijk, N., van Giezen, M. J., Heuvelmans, P. T., Lokman, B. C., & Pouwels, P. H. (1991). Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Applied and Environmental Microbiology, 57, 1822–1828.
    22.Uraji, M., Suzuki, K., & Yoshida, K. (2002). A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium tumefaciens. Genes & Genetic Systems, 77, 1–9.CrossRef
    23.Cruz-Rodz, A. L., & Gilmore, M. S. (1990). High efficiency introduction of plasmid DNA into glycine treated Enterococcus faecalis by electroporation. Molecular and General Genetics, 224, 152–154.CrossRef
    24.Holo, H., & Nes, I. F. (1989). High-frequency transformation by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Applied and Environmental Microbiology, 55, 3119–3123.
    25.Van de Guchte, M., van der Vossen, J. M. B. M., Kok, J., & Venema, G. (1989). Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Applied and Environmental Microbiology, 55, 224–228.
    26.Novick, R. P. (1987). Plasmid incompatibility. Microbiological Reviews, 51, 381–395.
    27.Montanari, G., Zambonelli, C., Grazia, L., Kamesheva, G. K., & Shigaeva, M. K. (1996). Saccharomyces unisporus as the principal alcoholic fermentation microorganism of traditional koumiss. Journal of Dairy Research, 63, 327–331.CrossRef
    28.Chen, Y., Wang, Z., Chen, X., Liu, Y., Zhang, H., & Sun, T. (2010). Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare’s milk. Journal of Dairy Science, 93, 884–892.CrossRef
    29.Tsilibaris, V., Maenhaut-Michel, G., Mine, N., & Van Melderen, L. (2007). What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? Journal of Bacteriology, 189, 6101–6108.CrossRef
    30.Kwan, B. W., Lord, D. M., Peti, W., Page, R., Benedik, M. J., & Wood, T. K. (2015). The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environmental Microbiology, 17, 3168–3181.CrossRef
    31.Samson, J. E., Spinell, S., Cambillau, C., & Moineau, S. (2013). Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the type III toxin-antitoxin system. Molecular Microbiology, 87, 756–768.CrossRef
    32.Dy, R. L., Przybilski, R., Semeijn, K., Salmond, G. P. C., & Fineran, P. C. (2014). A widespread bacteriophage abortive infection system functions through a type IV toxin-antitoxin mechanism. Nucleic Acids Research, 42, 4590–4605.CrossRef
  • 作者单位:Fang-Lei Zuo (1)
    Li-Li Chen (1)
    Zhu Zeng (1)
    Xiu-Juan Feng (1)
    Rui Yu (1)
    Xiao-Ming Lu (2)
    Hui-Qin Ma (3)
    Shang-Wu Chen (1)

    1. Key Laboratory of Functional Dairy Science of Chinese Ministry of Education and Municipal Government of Beijing, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road Haidian District, Beijing, 100083, People’s Republic of China
    2. Chinese National Egg Engineering Research Center, Beijing, 102115, People’s Republic of China
    3. College of Agriculture and Biotechnology, China Agricultural University, Beijing, 100193, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Biochemistry
  • 出版者:Humana Press Inc.
  • ISSN:1559-0291
文摘
To investigate the role of the native plasmid pML21 in Enterococcus faecalis ML21’s response to abiotic stresses, the plasmid pML21 was cured based on the principle of plasmid incompatibility and segregational instability, generating E. faecalis mutant strain ML0. The mutant and the wild strains were exposed to abiotic stresses: bile salts, low pH, H2O2, ethanol, heat, and NaCl, and their survival rate was measured. We found that curing of pML21 lead to reduced tolerance to stress in E. faecalis ML0, especially oxidative and osmotic stress. Complementation analysis suggested that the genes from pML21 played different role in stress tolerance. The result indicated that pML21 plays a role in E. faecalis ML21’s response to abiotic stresses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700