Energy cycle based on a high specific energy aqueous flow battery and its potential use for fully electric vehicles and for direct solar-to-chemical energy conversion
详细信息    查看全文
  • 作者:Yuriy V. Tolmachev ; Andrii Piatkivskyi…
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:19
  • 期:9
  • 页码:2711-2722
  • 全文大小:1,333 KB
  • 参考文献:1.Frumkin AN, Florianovich GM (1951) Dokl Akad Nauk SSSR 80:907
    2.Frumkin AN, Florianovich GM (1955) Zh Fiz Khim 29:1827
    3.Frumkin AN, Nikolaeva-Fedorovich NV, Berezina NP, Keis KE (1975) J Electroanal Chem 58:189CrossRef
    4.Vorotyntsev MA (1979) In Advances in science & technology: electrochemistry. VINITI 14:57-19
    5.Tolmachev YV (2012) USAPat. Appl. 13/969,597. Flow battery and regeneration system
    6.Tolmachev YV (2014) USA Pat. Appl. 14/184,702. Flow battery and regeneration system with improved safety
    7.Tolmachev YV (2014) USA Pat. Appl. 61/986,830. High specific energy aqueous flow battery
    8.Tolmachev YV, Vorotyntsev MA (2014) Russ J Electrochem 50:451-61
    9.Vorotyntsev MA, Konev DV, Tolmachev YV (2015) Electrochim Acta submitted
    10.Tomazic G, Skyllas-Kazacos M (2015) Electroreduction of halogen oxoanions via autocatalytic redox mediation by halide anions: novel EC-mechanism. Theory for stationary 1D regime. In: Electrochemical energy storage for renewable sources and grid balancing. Elsevier, Amsterdam
    11.Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Li B, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V (2014) J Power Sources 247:1040-051CrossRef
    12.Cunha á, Martins J, Rodrigues N, Brito FP (2015) Int J Energy Res. doi:10.-002/?er.-260
    13.Alotto P, Guarnieri M, Moro F (2014) Renew Sustain Energy Rev 29:325-35CrossRef
    14.Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Electrochim Acta 101:27-0CrossRef
    15.Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu QH (2011) J Appl Electrochem 41:1137-164CrossRef
    16.Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) J Electrochem Soc 158:R55–R79CrossRef
    17.Shigematsu T (2011) SEI Technol Rev 73:4-3
    18.Zhang HM, Zhang Y, Liu ZH, Wang XL (2009) Prog Chem 21:2333-340
    19.Tolmachev YV (2014) Russ J Electrochem 50:339-56
    20.Tucker M, Cho K, Weber A, Lin G, Van Nguyen T (2014) J Appl Electrochem 1-
    21.Potilitzin A (1891) J Russ ChemSoc 22:392-93
    22.Simmons JP, Waldeck WF (1931) J Am Chem Soc 53:1725-727CrossRef
    23.Bonner OD (1979) J Chem Eng Data 24:210-11CrossRef
    24.Partanen J (2012) J Solut Chem 41:271-93CrossRef
    25.Campbell AN, Oliver BG (1969) Can J Chem 47:2681-685CrossRef
    26.Oliver BG, Janz GJ (1971) J Phys Chem 75:2948-953CrossRef
    27.Campbell AN, Bhatnagar ON (1972) Can J Chem 50:1627-632CrossRef
    28.Wang S-CS, Bennion DN (1983) J Electrochem Soc 130:741-47CrossRef
    29.Stenger VA, Van Effen RM, Walker LC (2002) J Chem Eng Data 47:618-19CrossRef
    30.Linke WF (1955) J Am Chem Soc 77:866-67CrossRef
    31.Ruiz GN, Bove LE, Corti HR, Loerting T (2014) Phys Chem Chem Phys 16:18553CrossRef
    32.Ferro S (2005) J Appl Electrochem 35:279-83CrossRef
    33.Livshits V, Ulus A, Peled E (2006) Electrochem Commun 8:1358-362CrossRef
    34.Zhang R, Weidner JW (2011) J Appl Electrochem 41:1245-252CrossRef
    35.Zhang LS, Shao ZG, Wang XY, Yu HM, Liu S, Yi BL (2013) J Power Sources 242:15-2CrossRef
    36.Cho KT, Tucker MC, Ding M, Ridgway P, Battaglia VS, Srinivasan V, Weber AZ (2014) ChemPlusChem
    37.Huskinson B, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RJ, Aziz MJ (2014) Nature 505:195CrossRef
    38.Bennion DN, Wang SCS (1983) J Electrochem Soc 130:741CrossRef
    39.White JC (1948) PhD Diss (OSU) http://?books.?google.?com/?books??id=?O_?bUXwAACAAJ
    40.Pugh W (1932) Trans Roy Soc S Afr 20:327CrossRef
    41.Musbally GM (1966) PhD Diss (U Manitoba) http://?books.?google.?com/?books??id=-Cm3MwAACAAJ
    42.Chiang YM, Carter WC, Ho BY, Duduta M, Limthongkul P (2014) US8722227
    43.Chiang YM, Duduta M, Holman R, Limthongkul P, Tan T (2014) US20140170524
    44.Katsoudas J, Timofeeva EV, Singh D, Segre CU (2013) US 61/822208
    45.Huang QZ, Li H, Gratzel M, Wang Q (2013) Phys Chem Chem Phys 15:1793-797CrossRef
    46.Nandi AG (2013) BS thesis (NYU) http://?www.?stern.?nyu.?edu/?cons/?groups/?content/?documents/?webasset/?con_-42967.?pdf
    47.Wesoff E (2015) http://?www.?greentechmedia.?com/?articles/?read/?Boston-Power-Aims-to-Rival-Tesla-With-Gigawatt-Battery-Factories
    48.Griffiths S (2014) In The Daily Mail. 7 Nov 2014
    49.Cyrus Wadiaa PA, Srinivasan V (2011) J Power Sources 196:1593-598CrossRef
    50.Takahashi R, Tashi I (1961) Rev Polarog Japan 9:76-3CrossRef
    51.Desideri PG, Lepri L (1969) J Electroanal Chem 22:265-74CrossRef
    52.Cortes CES, Faria RB (2001) J Braz Chem Soc 12:775-79CrossRef
    53.Bergmann MEH, Koparal AS, Iourtchouk T (2014) Crit Rev Environ Sci Technol 44:348-90CrossRef
    54.Alotto P, Guarnieri M, Moro F, Stella A (2013) Compel 32:1459-470CrossRef
    55.Thomas D (2008) Can Naval Rev 3:35-6
    56.Mendez A, Leo TJ, Herreros MA (2014) Energies 7:4676-693CrossRef
    57.Mitlitsky F, Blake M, Weisberg AH (1998) Energy Fuel 56-1
    58.Faria RB, Epstein IR, Kustin K (1994) J Phys Chem 98:136
  • 作者单位:Yuriy V. Tolmachev (1)
    Andrii Piatkivskyi (2)
    Victor V. Ryzhov (2)
    Dmitry V. Konev (3) (4)
    Mikhail A. Vorotyntsev (3) (4) (5) (6)

    1. Ftorion, Inc., Boston, MA, 02120, USA
    2. Northern Illinois University, DeKalb, IL, 60115, USA
    3. Institute for Problems of Chemical Physics, Chernogolovka, Russia
    4. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
    5. Lomonosov Moscow State University, Moscow, Russia
    6. ICMUB UMR 6302 CNRS, Universite de Bourgogne, Dijon, France
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
A flow battery employing H2 as the fuel and one or more of highly soluble halate salts (such as 50 % w/w LiBrO3 aq.) as the oxidant presents a viable opportunity as a power source for fully electric vehicles which meets the specific energy, specific power, energy efficiency, cost, safety, and refill time requirements. We further disclose a process of regeneration of the fuel and the oxidant from the discharged halide salt and water using electric (or solar) energy as the only input and generating no chemical waste. The cycle of discharge and regeneration takes advantage of pH-driven comproportionation and disproportionation reactions, respectively, and of pH manipulation using an orthogonal ion migration across laminar flow (OIMALF? reactor. This article is dedicated to Prof. M.A. Vorotyntsev on the occasion of his 70th jubilee.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700