Main considerations for the determination and evaluation of the acid resistance of cementitious materials
详细信息    查看全文
  • 作者:Andreas Koenig ; Frank Dehn
  • 关键词:Acid resistance ; Accelerated testing ; 3D ; Micro X ; ray computer tomography (3D ; µXCT) ; Organic acids ; Inorganic acids
  • 刊名:Materials and Structures
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:49
  • 期:5
  • 页码:1693-1703
  • 全文大小:2,294 KB
  • 参考文献:1.Diepenseifen M, Hornung D, Schultz W (2008) Beton mit hohem Widerstand gegen Säureangriff. BetonW Int 6:48–56
    2.Franke L, Schmidt H, Schmidt-Döhl F (2010) Prüfung der Beständigkeit von Mörtelprodukten gegenüber saurem Angriff bis pH3 und Einstufung in Expositionsklassen. Beton 1:20–31
    3.Hüttl R, Hillemeier B (2000) High performance concrete—An example of acid resistance. Concr Plant Precast 66(1):52–60
    4.König A, Rasch S, Neumann T, Dehn F (2010) Concrete for biogenic acid attack in agricultural constructions. Beton und Stahlbetonbau 105(11):714–724. doi:10.​1002/​best.​201000069 CrossRef
    5.Lohaus L, Petersen L (2007) Hochleistungsbetone mit erhöhtem Säurewiderstand für den Kühlturmbau. Beton Inf 47(5+6):71–77
    6.Neumann T, Lichtmann M, König R (2009) Säurewiderstandsfähige Betone und ihre Anwendung. Eine Alternative zu teuren Baustoffen und kostspieligen Betonbeschichtungen. BetonW Int (BWI) 3:74–78
    7.Breit W (2004) Säurewiderstand von Beton—acid resistance of concrete. http://​www.​vdz-online.​de . Accessed 25 August 2014
    8.Alexander MG, Fourie C (2011) Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Mater Struct 44(1):313–330. doi:10.​1617/​s11527-010-9629-1 CrossRef
    9.Hüttl R, Lyhs P, Silbereisen R (2009) Beton auf Basis CEM II mit erhöhtem Widerstand gegenüber Säureangriff. IBAUSIL
    10.Fattuhi N, Hughes B (1988) The performance of cement paste and concrete subjected to sulphuric acid attack. Cem Concr Res 18:545–553. doi:10.​1016/​0008-8846(88)90047-6 CrossRef
    11.König A (2013) Biogener Säureangriff auf Betone im Biogasanlagenbau: Schädigungsmechanismen sowie Entwicklungspotentiale. Ph.D Thesis, Leipzig University
    12.Bertron A, Duchesne J, Escadeillas G (2005) Attack of cement pastes exposed to organic acids in manure. Cem Concr Compos 27(9/10):898–909. doi:10.​1016/​j.​cemconcomp.​2005.​06.​003 CrossRef
    13.Bertron A, Duchesne J, Escadeillas G (2007) Degradation of cement pastes by organic acids. Mater Struct 40(3):341–354. doi:10.​1617/​s11527-006-9110-3 CrossRef
    14.Bertron A, Escadeillas G, Duchesne J (2004) Cement pastes alteration by liquid manure organic acids: chemical and mineralogical characterization. Cem Concr Res 34(10):1823–1835. doi:10.​1016/​j.​cemconres.​2004.​01.​002 CrossRef
    15.Kiekbusch J (2007) Säureangriff auf zementgebundene Materialien. Ph.D Thesis, Hamburg University of Technology
    16.MacÍas A, Goñi S, Madrid J (1999) Limitations of Köch-Steinegger test to evaluate the durability of cement pastes in acid medium. Cem Concr Res 29:2005–2009. doi:10.​1016/​S0008-8846(99)00196-9 CrossRef
    17.Pavlík V (1996) Corrosion of hardened cement paste by acetic and nitric acids Part III: influence of water/cement ratio. Cem Concr Res 26(3):475–490. doi:10.​1016/​S0008-8846(96)85035-6 CrossRef
    18.ASTMC267 (2006) Test methods for chemical resistance of mortars. Grouts Monolith Surf Polym Concr
    19.Dehn F, Friedemann K, Schmidt D (2003) Säureresistente Hochleistungsbetone. Optimierung der Mischung sowie Verifizierung der Eigenschaften. Beton Fert (BFT) Int 3:30–38
    20.Fernando P, Said J (2011) Resistance to acid attack, abrasion and leaching behavior of alkali-activated mine waste binders. Mater Struct 44(2):487–498. doi:10.​1617/​s11527-010-9643-3 CrossRef
    21.Lanzón M, García-Ruiz PA (2010) Deterioration and damage evaluation of rendering mortars exposed to sulphuric acid. Mater Struct 43(3):417–427. doi:10.​1617/​s11527-009-9500-4 CrossRef
    22.Živica V, Bajza A (2002) Acidic attack of cement based materials—a review Part 2. Factors Rate Acidic Attack Prot Meas 6:215–222
    23.Živica V (2004) Acidic attack of cement based materials: a review part 3: research and test methods. Concr Build Mater 18:683–688. doi:10.​1016/​j.​conbuildmat.​2004.​04.​030 CrossRef
    24.Roy D, Arjunan P, Silsbee M (2001) Effect of silica fume, metakaolin and low-calcium fly ash on chemical resistance of concrete. Cem Concr Res 31(12):1809–1813. doi:10.​1016/​S0008-8846(01)00548-8 CrossRef
    25.Gruyaert E, Van Den Heede P, Maes M, De Belie N (2012) Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cem Concr Res 42(1):173–185. doi:10.​1016/​j.​cemconres.​2011.​09.​009 CrossRef
    26.Hüttl R (2009) Schutzmaßnahmen für Rohrleitungen und Bauwerke Verhinderung von Korrosion. BetonW Int (BWI) 3:148–150
    27.Paschmann H, Grube H, Thielen G (1995) Prüfverfahren und Untersuchungen zum Eindringen von Flüssigkeiten und Gasen in Beton sowie zum chemischen Widerstand von Beton. In: DAfStb-Heft 450, Berlin, Germany
    28.Monteny J, De Belie N, Vincke E, Taerwe L, Gemert DV, Verstraete W (2001) Chemical and microbiological tests to simulate sulfuric acid corrosion of polymer-modified concrete. Cem Concr Res 31(9):1359–1365. doi:10.​1016/​S0008-8846(00)00219-2 CrossRef
    29.Sand W, Milde K, Bock E (1983) Simulation of concrete corrosion in a strictly controlled H2S
    eeding chamber. Recent progress in biohydrometallurgy. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy, pp 667–677
    30.Schmidt R (1999) Werkstoffverhalten in biologischen Systemen. Grundl Anwend Schädigungsmechanismen Werkst. doi:10.​1007/​978-3-642-60074-6
    31.Vincke E, Verstichel S, Monteny J, Verstraete W (1999) A new test procedure for biogenic sulfuric acid corrosion of concrete. Biodegradation 10(6):421–428. doi:10.​1023/​A:​1008309320957 CrossRef
    32.Vincke E, van Wanseele E, Monteny J (2002) Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int Biodeterior Biodegrad 49(4):283–292. doi:10.​1016/​S0964-8305(02)00055-0 CrossRef
    33.DIN EN 196-1 (2005) Prüfverfahren für Zement—Teil 1: Bestimmung der Festigkeit. Ausgabe Mai 2005, Beuth Verlag, Berlin
    34.DIN EN 197-1 (2011) Zusammensetzung, Anforderungen und Konformitätskriterien von Normalzement, Beuth Verlag, Germany
    35.Ride DR, Weast RC (1985) Handbook of chemistry and physics, 66th edn. CRC Press, Ohio
    36.Graubau J (1995) Untersuchungen zur Korrosion zementgebundener Materialien durch saure Wässer unter besonderer Berücksichtigung des Schwefelsäureangriffs. Ph.D Thesis, Hamburg University of Technology
    37.Gunstmann C (2007) Rechnerische Simulation von Säurekorrosionsprozessen zementgebundener Materialien. Ph.D Thesis, Hamburg University of Technology
    38.Holleman A, Wiberg E, Wiberg N (2007) Lehrbuch der anorganischen Chemie, Berlin [u.a.]. de Gruyter
  • 作者单位:Andreas Koenig (1)
    Frank Dehn (1)

    1. Multifunctional Construction Materials Group, Leipzig University, Scharnhorststr. 20, 04275, Leipzig, Germany
  • 刊物类别:Engineering
  • 刊物主题:Structural Mechanics
    Theoretical and Applied Mechanics
    Mechanical Engineering
    Operating Procedures and Materials Treatment
    Civil Engineering
    Building Materials
  • 出版者:Springer Netherlands
  • ISSN:1871-6873
文摘
The paper reports on the development of an accelerated test method for determining and evaluating acid resistance of highly alkaline cementitious materials. The test method was derived through extensive laboratory experiments on hardened cement pastes, mortars and concretes, in order to determine the acid specific modes of action and to evaluate the related deterioration mechanisms for cementitious materials when subjected to acid attack. From the experimental study it can be concluded that the pH value of the acid solution is not the only decisive parameter. For example organic acids, such as acetic acid, cause a higher damaging effect compared to so-called “strong” acids (such as sulphuric or hydrochloric acid) because of the acid buffer action and the high solubility of the reaction products. In order to enable a constant deterioration rate the pH value during testing conditions has to be regulated at a stationary level, the degree of saturation in the acid solution needs to be regularly examined, and in particular for organic acids, the acid solution needs to be continuously stirred. The degree of degradation can be quantified by using visual methods or through measuring the residual mechanical properties, e.g. the compressive and/or flexural tensile strength. It should be noted that different damage mechanisms are possible, which are strongly dependent on the applied acid solution and constituents of the cementitious materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700