Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana
详细信息    查看全文
  • 作者:Yusuke Kazama (1)
    Tomonari Hirano (1) (2)
    Hiroyuki Saito (1)
    Yang Liu (1)
    Sumie Ohbu (1)
    Yoriko Hayashi (1)
    Tomoko Abe (1) (2)
  • 刊名:BMC Plant Biology
  • 出版年:2011
  • 出版时间:December 2011
  • 年:2011
  • 卷:11
  • 期:1
  • 全文大小:421KB
  • 参考文献:1. Richardson FC, Richardson KK: Sequence-dependent formation of alkyl DNA adducts: a review of methods, results, and biological correlates. / Mutat Res 1990, 233:127-38. CrossRef
    2. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S: Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis . / Genetics 2003, 164:731-40.
    3. McCallum CM, Comai L, Greene EA, Henikoff S: Targeted screening for induced mutations. / Nature Biotech 2000, 18:455-57. CrossRef
    4. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ: High-resolution genotyping by amplicon melting analysis using LCGreen. / Clin Chem 2003, 49:853-60. CrossRef
    5. Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S: Discovery of induced point mutations in maize genes by TILLING. / BMC Plant Biol 2004, 4:12. CrossRef
    6. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L: Discovery of chemically induced mutations in rice by TILLING. / BMC Plant Biol 2007, 7:19. CrossRef
    7. Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S: TILLING to detect induced mutations in soybean. / BMC Plant Biol 2008, 8:9. CrossRef
    8. Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S: A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. / BMC Plant Biol 2009, 9:115. CrossRef
    9. Shirley BW, Hanley S, Goodman HM: Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. / Plant Cell 1992, 4:333-47. CrossRef
    10. Cecchini E, Mulligan BJ, Covey SN, Miner JJ: Characterization of gamma irradiation-induced deletion mutations at a selectable locus in Arabidopsis . / Mutation Res 1998, 401:199-06. CrossRef
    11. Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M: Molecular characterization of mutations induced by gamma irradiation in rice. / Genes Genet Syst 2009, 84:361-70. CrossRef
    12. Abe T, Bae CH, Ozaki T, Wang K, Yoshida S: Stress tolerant mutants induced by heavy -ion beams. / Gamma Field Symp 2000, 39:45-4.
    13. Tanaka A, Shikazono N, Hase Y: Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. / J Radiat Res 2010, 51:223-33. CrossRef
    14. Miyazaki K, Suzuki K, Iwaki K, Kusumi T, Abe T, Yoshida S, Fukui H: Flower pigment mutations induced by heavy ion beam irradiation in an inter specific hybrid of Torenia. / Plant Biotech 2008, 23:163-67. CrossRef
    15. Kanaya T, Saito H, Hayashi Y, Fukunishi N, Ryuto H, Miyazaki K, Kusumi T, Abe T, Suzuki K: Heavy-ion beam-induced sterile mutants of verbena ( Verbena × hybrida ) with an improved flowering habit. / Plant Biotech 2008, 25:91-6. CrossRef
    16. Ryuto H, Fukunishi N, Hayashi Y, Ichida H, Abe T, Kase M, Yano Y: Heavy-ion beam irradiation facility for biological samples in RIKEN. / Plant Biotech 2008, 25:119-22. CrossRef
    17. Ward JF: The complexity of DNA damage: relevance to biological consequences. / Int J Rad Biol 1994, 66:427-32. CrossRef
    18. Goodhead DT: Molecular and cell models of biological effects of heavy ion radiation. / Radiat Environ Biophys 1995, 34:67-2. CrossRef
    19. Hoglund E, Blomquist E, Carlsson J, Stenerlow B: DNA damage induced by radiation of different linear energy transfer: initial fragmentation. / Int J Radiat Biol 2000, 76:539-47. CrossRef
    20. Yokota Y, Yamada S, Hase Y, Shikazono N, Narumi I, Tanaka A, Inoue M: Initial yields of DNA double-strand breaks and DNA Fragmentation patterns depend on linear energy transfer in tobacco BY-2 protoplasts irradiated with helium, carbon and neon ions. / Radiat Res 2007, 167:94-01. CrossRef
    21. Shikazono N, Suzuki C, Kitamura S, Watanabe H, Tano S, Tanaka A: Analysis of mutations induced by carbon ions in Arabidopsis thaliana . / J Exp Bot 2005, 56:587-96. CrossRef
    22. Kazama Y, Saito H, Yamamoto YY, Hayashi Y, Ichida H, Ryuto H, Fukunishi N, Abe T: LET-dependent effects of heavy-ion beam irradiation in Arabidopsis thaliana . / Plant Biotech 2008, 25:113-17. CrossRef
    23. Shitsukawa N, Ikari C, Shimada S, Kitagawa S, Sakamoto K, Saito H, Ryuto H, Fukunishi N, Abe T, Takumi S, Nasuda S, Murai K: The einkorn wheat ( Triticum monococcum ) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. / Genes Genet Syst 2007, 82:167-70. CrossRef
    24. Koornneef M, Rolff E, Spruit CJP: Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L) Heynh. / Z Pflanzenphysiol 1980, 100:147-60.
    25. Reed JW, Nagpal P, Poole DS, Furuya M, Chory J: Mutations in the gene for the red far-red light receptor phytochrome-B alter cell elongation and physiological responses throughout Arabidopsis development. / Plant Cell 1993, 5:147-57. CrossRef
    26. Ahmad M, Cashmore AR: HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. / Nature 1994, 366:162-66. CrossRef
    27. Muramoto T, Kohchi T, Yokota A, Hwang IH, Goodman HM: The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. / Plant Cell 1999, 11:335-47. CrossRef
    28. Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC: The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. / Plant Cell 2001, 13:425-36. CrossRef
    29. Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC: The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. / Plant Cell 1999, 11:1337-350. CrossRef
    30. Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD: A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. / Cell 1991, 67:483-93. CrossRef
    31. Rerie WG, Feldmann KA, Marks MD: The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis . / Genes Dev 1994, 8:1388-399. CrossRef
    32. Bruggemann E, Handwerger K, Essex C, Storz G: Analysis of fast neutron-generated mutants at the Arabidopsis thaliana HY4 locus. / Plant J 1996, 10:755-60. CrossRef
    33. Shikazono N, Tanaka A, Watanabe H, Tano S: Rearrangements of the DNA in carbon ion-induced mutants of Arabidopsis thaliana . / Genetics 2001, 157:379-87.
    34. Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A: The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. / Plant Cell 2001, 13:2115-125. CrossRef
    35. Christensen SK, Dagenais N, Chory J, Weigel D: Regulation of auxin response by the protein kinase PINOID . / Cell 2000, 100:469-78. CrossRef
    36. Takechi K, Sodmergen Murata M, Motoyoshi F, Sakamoto W: The YELLOW VARIEGATED ( VAR2 ) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis . / Plant Cell Physiol 2000, 41:1334-346. CrossRef
    37. Gorbunova V, Levy AA: How plants make ends meet: DNA double-strand break repair. / Trends Plant Sci 1999, 4:263-69. CrossRef
    38. Koornneef M, Dellaert LW, van der Veen JH: EMS- and radiation-induced mutation frequencies at individual loci in Arabidopsis thaliana (L.) Heynh. / Mutat Res 1982, 93:109-23. CrossRef
    39. Naito K, Kusaba M, Shikazono N, Takano T, Tanaka A, Tanisaka T, Nishimura M: Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with gamma-rays and carbon ions. / Genetics 2005, 169:881-89. CrossRef
    40. Masumura K, Kuniya K, Kurobe T, Fukuoka M, Yatagai F, Nohmi T: Heavy-ion-induced mutations in the gpt delta transgenic mouse: comparison of mutation spectra induced by heavy-ion, X-ray, and gamma-ray radiation. / Environ Mol Mutagen 2002, 40:207-15. CrossRef
    41. Suzuki M, Watanabe M, Kanai T, Kase Y, Yatagai F, Kato T, Matsubara S: LET dependence of cell death, mutation induction and chromatin damage in human cells irradiated with accelerated carbon ions. / Adv Space Res 1996, 18:127-36. CrossRef
    42. Ottolenghi A, Merzagora M, Tallone L, Durante M, Paretzke HG, Wilson WE: The quality of DNA double-strand breaks: a Monte Carlo simulation of the end-structure of strand breaks produced by protons and alpha particles. / Radiat Environ Biophys 1995, 34:239-44. CrossRef
    43. Alloni D, Campa A, Belli M, Esposito G, Facoetti A, Friedland W, Liotta M, Mariotti L, Paretzke HG, Ottolenghi A: A Monte Carlo study of the radiation quality dependence of DNA fragmentation spectra. / Radiat Res 2010, 173:263-71. CrossRef
    44. Blocher D: DNA double-strand break repair determines the RBE of alpha-particles. / Int J Radiat Biol 1988, 54:761-71. CrossRef
    45. Pastwa E, Neumann RD, Mezhevaya K, Winters TA: Repair of radiation-induced DNA double-strand breaks is dependent upon radiation quality and the structural complexity of double-strand breaks. / Radiat Res 2003, 159:251-61. CrossRef
    46. Lobrich M, Cooper PK, Rydberg B: Non-random distribution of DNA double-strand breaks induced by particle irradiation. / Int J Radiat Biol 1996, 70:493-03. CrossRef
    47. Ichida H, Matsuyama T, Ryuto H, Hayashi Y, Fukunishi N, Abe T, Koba T: Molecular characterization of microbial mutations induced by ion beam irradiation. / Mutat Res 2008, 639:101-07. CrossRef
    48. Ryuto H, Abe T, Fukunishi N, Kase M, Yano Y: Heavy-ion beam irradiation system for biological samples in RIKEN. / J Biomed Nanotech 2006, 2:88-3. CrossRef
    49. Scholz M: Dose response of biological systems to low- and high-LET radiation. In / Microdosimetric response of physical and biological systems to low- and high-LET radiations 2006. Edited by: Horowitz Y. Oxford, UK: Elsevier; 2006:1-3. CrossRef
    50. Liu YG, Mitsukawa N, Oosumi T, Whittier RF: Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. / Plant J 1995, 8:457-63. CrossRef
  • 作者单位:Yusuke Kazama (1)
    Tomonari Hirano (1) (2)
    Hiroyuki Saito (1)
    Yang Liu (1)
    Sumie Ohbu (1)
    Yoriko Hayashi (1)
    Tomoko Abe (1) (2)

    1. RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
    2. RIKEN Innovation Center, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
文摘
Background Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm-1) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Results Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm-1 at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm-1 and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. Conclusions The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward genetics and plant breeding.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700