Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China
详细信息    查看全文
  • 作者:Guojie Hu ; Lin Zhao ; Ren Li ; Tonghua Wu ; Xiaodong Wu
  • 关键词:permafrost ; coupled heat and mass transfer model (CoupModel) ; soil temperature ; soil moisture ; hydrothermal processes ; active layer
  • 刊名:Chinese Geographical Science
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:25
  • 期:6
  • 页码:713-727
  • 全文大小:1,998 KB
  • 参考文献:Alexeev V A, Nicolsky D J, Romanovsky V E et al., 2007. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophysical Research Letters, 34(9): L090502. doi: 10.1029/2007GL029536CrossRef
    Bowling L C, Lettenmaier D P, Nijssen B et al., 2003. Simulation of high-latitude hydrological processes in the Torne-Kalix Basin: PILPS phase 2(e)3: Equivalent model representation and sensitivity experiments. Global and Planetary Change, 38(1–2): 55–71. doi: 10.1016/S0921-8181(03)00005-5CrossRef
    Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environment significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112 (F2): F02S03. doi: 10.1029/2006JF000631CrossRef
    Cheng Guodong, 1990. Recent development of geocryological study in China. Acta Geographica Sinica, 45(2): 220–223. (in Chinese)
    Cheng Guodong, 1998. Glaciology and geocryology of China in the past 40 years: Progress and prospect. Journal of Glaciology and Geocryology, 20(3): 213–226. (in Chinese)
    Cheng Guodong, Zhao Lin, 2000. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau. Quaternary Sciences, 20(6): 521–531. (in Chinese)
    Eckersten H, Blomback K, Katterer T et al., 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agriculture Ecosystems & Environment, 86(3): 221–235. doi: 10.1016/S0167-8809(00)00284-XCrossRef
    Gao Z Q, Chae N, Kim J et al., 2004. Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibet prairie using the simple biosphere model 2(SiB2). Journal of Geophysical Research, 102(D06): 1–11. doi: 10.1029/2003JD004089
    Harlan R L, 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resources Research, 9(5): 1314–1323. doi: 10.1029/WR009i005p01314CrossRef
    He Ping, Cheng Guodong, Zhu Yuanlin, 2001. The progress of study on heat and mass transfer in freezing soils. Journal of Glaciology and Geocryology, 23(1): 92–98. (in Chinese)
    Henderson-Sellers A, Pitman A J, Love P K et al., 1995. The project for intercomparison of land-surface parameterization schemes (PILPS)-phase-2 and phase-3. Bulletin of the American Meteorological Society, 76(4): 489–503.CrossRef
    Henderson-Sellers A, Yang Z L, Dickinson R E, 1993. The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 74(7): 1335–1350.CrossRef
    Jansson P E, Karlberg L, 2004. Theory and practice of coupled heat and mass transfer model for soil-plant-atmosphere system. In: Zhang Hongjiang et al. (eds.). Translation. Beijing: Science Press, 1–50. (in Chinese)
    Jansson P E, Moon D, 2001. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modelling & Software, 16(1): 37–46. doi: 10.1016/S1364-8152(00)00062-1CrossRef
    Li X, Cheng G D, Jin H J et al., 2008. Cryospheric change in China. Global and Planetary Change, 62: 210–218.CrossRef
    Loumagne C, Chkir N, Normand M, 1996. Introduction of the soil vegetation-atmospheric continuum in a conceptual rainfall-runoff model. Hydrological Science Journal, 41(6): 889–902.CrossRef
    Luo Jinming, Deng Wei, Zhang Xiaoping et al., 2008. Variation of water and salinity in sodic saline soil during frozen-thawing season. Advances in Water Sciences, 19(4): 559–566. (in Chinese)
    Luo Siqiong, Lv Shihua, Zhang Yu et al., 2008. Simulation analysis on land surface process of BJ site of central Tibet Plateau using CoLM. Plateau Meteorology, 27(2): 259–271. (in Chinese)
    Mao Xuesong, Hu Changshun, Dou Mingjian et al., 2003. Dynamic observation and analysis of moisture and temperature field coupling process in freezing soil. Journal of Glaciology and Geocryology, 25(1): 55–59. (in Chinese)
    McGechan M B, Graham R, Vinten A J A et al., 1997. Parameter selection and testing the soil water model SOIL. Journal of Hydrology, 195(1–4): 312–334.CrossRef
    Nassar I N, Horton R, Flerchinger G N, 2000. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions. Soil Science, 165(3): 208–216.CrossRef
    Nicolsky D J, Romanovsky V E, Alexeev V A et al., 2007. Improved modeling of permafrost dynamics in a GCM land surface scheme. Geophysical Research Letters, 34(8): L080501. doi: 10.1029/2007GL029525CrossRef
    Riseborough D W, Shiklomanov N I, Etzelmuller B et al., 2008. Recent advances in permafrost modeling. Permafrost and Periglacial Processes, 19(2): 137–156. doi: 10.1002/ppp.615CrossRef
    Scherler M, Hauck C, Hoelzle M et al., 2010. Melt water infiltration into the frozen active layer at an Alpine permafrost site. Permafrost and Perglacial Process, 21(4): 325–334.CrossRef
    Shoop S A, Bigl S R, 1997. Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments. Cold Regions Science and Technology, 25(1): 33–45. doi: 10.1016/S0165-232X (96)00015-8CrossRef
    Wang Chenghai, Shi Rui, 2007. Simulation of the land surface processes in the western Tibet Plateau in summer. Journal of Glaciology and Geocryology, 29(1): 73–81. (in Chinese)
    Wang Qingchun, Li Lin, Li Dongliang et al., 2005. Response of permafrost over Qinghai Plateau to climate warming. Plateau Meteorology, 24(5): 708–713. (in Chinese)
    Wu Q B, Cheng G D, Ma W et al., 2006. Technical approaches on permafrost thermal stability for Qinghai-Tibet Railway. Geomechanics and Geoengineering, 1(2): 119–127. doi: 10.1080/17486020600777861CrossRef
    Wu Q B, Liu Y J, 2004. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Science and Technology, 38(2–3): 85–92. doi: 10.1016/S0165-232X(03)00064-8
    Wu Q B, Zhang T J, 2008. Recent permafrost warming on the Qinghai-Tibet Pleateau. Journal of Geophysical Research, 113: D13108.CrossRef
    Wu Qingbai, Shen Yongping, Shi Bin, 2003. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibet Plateau. Journal of Glaciology and Geocryology, 25(3): 250–255. (in Chinese)
    Wu S H, Jansson P E, Zhang X Y, 2011a. Modeling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China. European of Journal of Soil Science, 62(6): 780–796. doi: 10.1111/j.1365-2389.2011.01397.xCrossRef
    Wu S H, Jansson P E, Kolari P, 2012. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal scots pine ecosystem. Agricultural and Forest Meteorology, 156: 85–103. doi: 10.1016/j.agrformet.2012. 01.006CrossRef
    Xiao Y, Zhao L, Dai Y J et al., 2013. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology, 87(4): 68–77. doi: 10.1016/j.coldregions.2012.12.004
    Xiao Yao, Zhao Lin, Li Ren et al., 2011. Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibet Plateau. Journal of Glaciology and Geocryology, 33(5): 1033–1037. (in Chinese)
    Xu Xuezu, Wang Jiacheng, Zhang Lixin, 2001. Physics of Frozen Soils. Beijing: Science Press, 1–30. (in Chinese)
    Yang Jianping, Ding Yongjian, Chen Rensheng et al., 2004. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers. Journal of Mountain Science, 22(3): 278–285. (in Chinese)
    Yang Meixue, Yao Tandong, 1998. A review of the study on the impact of snow cover in the Tibet an Plateau on Asian Monsoon. Journal of Glaciology and Geocryology, 20(2): 14–19. (in Chinese)
    Yang Yong, Chen Rensheng, Ji Xibin et al., 2010. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China. Advances in Water Science, 21(1): 30–34. (in Chinese)
    Yao J M, Zhao L, Ding Y J et al., 2008. The surface energy budget and evapotranspiration in the Tanggula region on the Tibet Plateau. Cold Regions Science and Technology, 52(1): 326–340. doi: 10.1016/j.coldregions.2007.04.001CrossRef
    Zhang S L, Lövdahl L, Grip H et al., 2007. Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil & Tillage Research, 100(2–3): 311–319. doi: 10.1016/j.fcr.2006.08.006
    Zhang Yanwu, Lv Shihua, Li Dongliang et al., 2003. Numerical simulation of freezing soil process on Qinghai-Xizang Plateau in early winter. Plateau Meteorology, 22(5): 471–477. (in Chinese)
    Zhang Yu, Song Meihong, Lv Shihua et al., 2003. Frozen soil parameterization scheme coupled with mesoscale model. Journal of Glaciology and Geocryology, 25(5): 541–546. (in Chinese)
    Zhao Lin, 2004. The Freezing-thawing Processes of Active Layer and Changes of Seasonally Frozen Ground on the Tibet Plateau. Beijing: Chinese Academy of Sciences, 30–50. (in Chinese)
    Zhao Lin, Li Ren, Ding Yongjian, 2008. Simulation on the soil water-thermal characteristics of the active layer in Tanggula range. Journal of Glaciology and Permafrost Engineering, 30(6): 930–937. (in Chinese)
    Zhou J, Kinzelbach W, Cheng G D et al., 2013. Monitoring and modelling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibet Plateau of China. Cold Regions Science and Technology, 90–91: 38–52. doi: 10.1016/j.coldregions.2013.03.003CrossRef
  • 作者单位:Guojie Hu (1)
    Lin Zhao (1)
    Ren Li (1)
    Tonghua Wu (1)
    Xiaodong Wu (1)
    Qiangqiang Pang (1)
    Yao Xiao (1)
    Yongping Qiao (1)
    Jianzong Shi (1)

    1. Cryosphere Research Station on Qinghai-Xizang Plateau, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
  • 刊物主题:Geography (general);
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-064X
文摘
Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global warming. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R 2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0–20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water exchanges between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thawing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeper and permafrost degradation. Keywords permafrost coupled heat and mass transfer model (CoupModel) soil temperature soil moisture hydrothermal processes active layer

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700