The impacts of net long-wave radiation on the surface soil thermal regimes over the Qinghai–Tibetan Plateau, China
详细信息    查看全文
  • 作者:Ren Li ; Lin Zhao ; Tonghua Wu ; Xiaodong Wu ; Yao Xiao…
  • 关键词:Net long ; wave radiation ; Soil thermal regime ; Freezing–thawing intensity ; Qinghai–Tibetan Plateau
  • 刊名:Environmental Earth Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:75
  • 期:3
  • 全文大小:846 KB
  • 参考文献:Allan RP (2009) Examination of relationships between clear-sky longwave radiation and aspects of the atmospheric hydrological cycle in climate models, reanalyses, and observations. J Clim 22:3127–3145CrossRef
    Ding YJ, Ye BS, Liu SY, Shen YP, Wang SL, Yang MX (2000) Observational study on the permafrost hydrological processes in large scale on the Tibetan Plateau. Chin Sci Bull 45(2):208–214
    Dun AM, Wu GX (2006) Change of cloud amount and the climate warming on the Tibetan plateau. Geophys Res Lett 33:L22704. doi:10.​1029/​2006GL027946 CrossRef
    Frauenfeld OW, Zhang T, McCreight JL (2007) Northern hemisphere freezing/thawing index variations over the twentieth century. Int J Climatol 27:47–63CrossRef
    Gao GD, Lu YR (1982) Land surface radiation balance and heat balance in China. Science Press, Beijing, pp 63–86
    Gupta SK, Ritchey NA, Wilber AC, Whitlock CH, Gibson GG, Stackhouse PW Jr (1999) A climatology of surface radiation budget derived from satellite data. J Clim 12(8):2691–2710. doi:10.​1175/​1520-0442 CrossRef
    Iziomon MG, Mayer H, Wicke W, Matzarakis A (2001) Radiation balance over low-lying and mountainous areas in south-west Germany. Theor Appl Climatol 68:219–231. doi:10.​1007/​s007040170047 CrossRef
    Jacovides CP, Kallos GB, Steven MD (1993) Spectral band resolution of solar radiation in Athens, Greece. Int J Climatol 13(6):689–697CrossRef
    Ji GL (1985) The relationship between the radiation and climate in Qinghai-Xizang Plateau during August 1982 to July 1983. Plateau Meteorol 4(4, supplement):10–20
    Ji GL (1997) Observation and research on the radiation budget in the region of Qinghai–Tibetan Plateau. Research on climate change and its impact in China. China Meteorological Press, Beijing, pp 124–131
    Ji GL (1998) Radiation budget in the region of plateau. Climate change and its impact on the environment on the Qinghai–Tibetan Plateau in modern time. Guangzhou Science and Technology Press, Guangzhou, pp 1–32
    Ji GL (1999) Advances in the energy budget observation experiment over the Qinghai–Tibetan Plateau. Plateau Meteorol 18(3):333–340
    Ji GL (2003) Observation experiment on surface radiation budget and heat source on the plateau. Formation and Evolution of the Qinghai–Tibetan Plateau. Hebei Science and Technology Press, Shijiazhuang, pp 120–129
    Ji GL, Yao LC, Yuan FM (1986) Characteristics of surface and atmospheric heating fields over Qinghai–Tibetan Plateau during the winter in 1982. Sci Chin Ser B 29(8):876–888
    Ji GL, Jiang H, Zhang SF (1987) The computation and some distribution characteristics of effective radiation over the Qinghai–Tibetan Plateau and its adjacent areas. Plateau Meteorol 6(2):141–149
    Ji GL, Zhong Q, Shen ZB (1989) Advances in observation and research of the surface heat source over the Qinghai–Tibetan Plateau. Plateau Meteorol 8(2):127–132
    Ji GL, Jiang H, Lu LZ (1995) Features of long-wave radiation on the Qinghai–Tibetan Plateau. Plateau Meteorol 14(4):451–458
    Ji GL, Jiang H, Zou JL (1996) Features of ground radiation budget in the area of Wudaoliang on the Qinghai–Tibetan Plateau. Annual of researches on the formation, evolution, environmental change and ecosystem of Qinghai–Tibetan Plateau (1995). Science Press, Beijing, pp 211–217
    Ji GL, Zou JL, Lu LZ (1997) The seasonal variation of surface heating field over the Northern Qinghai–Tibetan Plateau. Plateau Meteorol 16(1):1–9
    Jiang H, Wang KL (2000) Analysis of the surface temperature over Qinghai–Tibetan Plateau from satellite. Plateau Meteorol 19(3):328–330
    Li R, Ji GL, Yang W (2005) Retrieve aerosol optical information from atmospheric broad-band transmittance on clear sky. Acta Energe Sol Sin 26(2):150–156
    Li R, Ji GL, Yang W, Zhao JQ (2006) Parameterization of effective radiation over the Qinghai–Tibetan Plateau. Acta Energe Sol Sin 27(3):274–278
    Li R, Zhao L, Ding YJ, Shen YP, Du EJ, Liu GY (2009) The climatic characteristics of the maximum seasonal frozen depth in the Tibetan Plateau. J Glaciol Geocryol 31(6):1050–1056
    Li R, Zhao L, Ding YJ, Wu TH, Xiao Y, Du EJ, Liu GY, Qiao YP (2012) Temporal and spatial variations of the active layer along the Qinghai–Tibet highway in a permafrost region. Chin Sci Bull 57(35):4609–4616CrossRef
    Ma Q, Wang KC, Wild M (2014) Evaluations of atmospheric downward longwave radiation from 44 coupled general circulation models of CMIP5. J Geophys Res Atmos 119:4486–4497. doi:10.​1002/​2013JD021427 CrossRef
    Nelson FE, Anisimov OA (1993) Permafrost zonation in Russia under anthropogenic climate change. Permafr Periglac Process 4(2):137–148CrossRef
    Nelson FE, Outcalt SI (1987) A computational method for prediction and regionalization of permafrost. Arct Alp Res 19(3):279–288CrossRef
    Niemelä N, Räisänen P, Savijärvi H (2001) Comparison of surface radiative flux parameterizations. PartI: long wave radiation. Atmos Res 58(1):1–18CrossRef
    Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806CrossRef
    Prata F (2008) The climatological record of clear-sky longwave radiation at the Earth’s surface: evidence for water vapour feedback? Int J Remote Sens 29:5247–5526CrossRef
    Ruckstuhl C, Philipona R, Behrens K, Coen MC, Dürr B, Heimo A, Mätzler C, Nyeki S, Ohmura A, Vuilleumier L, Weller M, Wehrli C, Zelenka A (2008) Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophys Res Lett 35:L12708CrossRef
    Shao HY, Zhang HL (1998) Climatic features in the source regions of the Yangtze and Yellow rivers. Qinghai Environ 8(2):68–72
    Shi QQ, Liang SL (2013) Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets. 2. Spatiotemporal analysis. J Geophys Res Atmos 118:8921–8934. doi:10.​1002/​jgrd.​50719 CrossRef
    Smith GL, Wilber AC, Gupta SK, Stackhouse PW (2002) Surface radiation budget and climate classification. J Clim 15(10):1175–1188CrossRef
    Sun ZA, Weng DM (1986) Climatological calculation and distributional features of effective radiation over China (Part II): empirical computation method and distribution features. J Nanjing Institute Meteorol 4:335–347
    Wacker S, GröBner J, Hocke K, KäMpfer N, Vuilleumier L (2011) Trend analysis of surface cloud-free downwelling long-wave radiation from four Swiss sites. J Geophys Res Atmos 116:D10104. doi:10.​1029/​2010JD015343 CrossRef
    Wang GZ (1983) Essay about the climate of Wudaoliang. Meteorol Monthly 2:27
    Wang KC, Liang SL (2009) Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J Geophys Res Atmos 114(D19101):D19101. doi:10.​1029/​2009JD011800 CrossRef
    Weng DM, Feng YH (1984) Feature analysis of effective terrestrial radiation and atmospheric counter radiation in summer on the Qinghai–Tibetan Plateau. Chin Sci Bull 13:796–799
    Weng DM, Chen WL, Shen JC (1984) A discussion on the computation method for the climate from the total quantity of effective radiation at arbitrary periods on Qinghai–Tibetan Plateau. Plateau Meteorol 3(1):73–82
    Wu TH, Wang QX, Zhao L, Batkhishig O, Watanabe M (2011) Observed trends in surface freezing/thawing index over the period 1987–2005 in Mongolia. Cold Reg Sci Technol 69(1):105–111
    Zhang XC, Gu S, Zhao XQ, Cui XY, Zhao LL, Xu SX, Du MY, Jiang S, Yb G, Ma C, Tang YH (2010) Radiation partitioning and its relation to environmental factors above a meadow ecosystem on the Qinghai–Tibetan Plateau. J Geophys Res Atmos 115:D10106. doi:10.​1029/​2009JD012373 CrossRef
    Zhao L, Li R, Ding YJ (2008) Simulation on the soil water-thermal characteristics of the active layer in Tanggula Range. J Glaciol Geocryol 30(6):930–937
    Zheng D, Zhang RZ, Yang QY (1979) On the natural zonation in the Qinghai-Xizang Plateau. Acta Geogrphica Sinica 34(1):1–11
    Zhou YH (1984a) An empirical method for estimating surface long-wave radiation exchanges in the Qinghai–Tibetan Plateau. Acta Geogr Sin 39(2):148–162
    Zhou YH (1984b) A study on the net long-wave radiation over the Qinghai–Tibetan Plateau in summer by use of satellite cloud pictures. Plateau Meteorol 3(1):60–72
    Zhou YH, Li YH, Zuo DK (1964) Comparison of several radiation charts. Acta Meteorol Sin 34(2):135–145
    Zhou SZ, Zhang RR, Zhang C (1990) Meteorology and climatology, 2nd edn. Higher Education Press, Beijing, pp 40–42
    Zhou YW, Qiu GQ, Guo DX, Cheng GD (2000) China’s frozen ground. Science Press, Beijing, pp 1–62
    Zuo DK, Chen JS, Li YH, Zhou YH (1965) Radiation balance of the “earth-atmosphere” system and the atmosphere over eastern Asia. Acta Geogr Sin 31(2):100–112
    Zuo DK, Zhou YH, Xiang YQ (1991) The earth’s surface radiation research. Science Press, Beijing, pp 37–49
  • 作者单位:Ren Li (1)
    Lin Zhao (1)
    Tonghua Wu (1)
    Xiaodong Wu (1)
    Yao Xiao (1)
    Yizhen Du (1)
    Yanhui Qin (1)

    1. Cryosphere Research Station on the Qinghai-Tibet Plateau, State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:None Assigned
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1866-6299
文摘
Radiation data measured at six stations on the Qinghai–Tibetan Plateau (QTP) were used to analyze the variation of net long-wave radiation (L n ). The stations were located in the arid, semiarid, and sub-humid climate zones, covering the major climate types of the QTP. The impacts of L n , combined with soil temperature data, on the thermal regime of ground surfaces were evaluated. L n varied regionally over the QTP. It decreased in the northeastern and western parts and the interior of the QTP, while it showed an increasing trend in the southeastern part of the QTP. L n declined significantly at a rate of 0.415 MJ m−2 day−1 per decade during the past 20 years. L n greatly influenced the freezing index (DDF). DDF and the surface freezing–thawing intensity (FTI) increased with decreasing L n . L n was negatively correlated with FTI and this was most pronounced with a 2-year-lag FTI. The ratio of L n /R s (R s denotes the global radiation) was greater than the surface albedo (R k /R s ) (R k denotes the reflected radiation). Both parameters resulted in surface energy loss and a lowering of the surface temperature. The cooling effect of L n /R s exceeds that of R k /R s .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700