Evaluation of MegaVoltage Cone Beam CT image quality with an unmodified Elekta Precise Linac and EPID: a feasibility study
详细信息    查看全文
  • 作者:Tim Markwell (1) (2)
    Lakshal Perera (1)
    Jamie Trapp (1)
    Andrew Fielding (1)
  • 关键词:MegaVoltage imaging ; MVCBCT ; Cone Beam CT ; Image quality ; EPID
  • 刊名:Australasian Physical & Engineering Sciences in Medicine
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:37
  • 期:2
  • 页码:291-302
  • 全文大小:
  • 参考文献:1. Mell LK, Mehrotra AK, Mundt AJ (2005) Intensity-modulated radiation therapy use in the U.S., 2004. Cancer 104(6):1296-303 CrossRef
    2. Jaffray D, Kupelian P, Djemil T, Macklis RM (2007) Review of image-guided radiation therapy. Expert Rev Anticancer Ther 7(1):89-03 CrossRef
    3. Antonuk LE (2002) Electronic portal imaging devices: a review and historical perspective of contemporary technologies and research. Phys Med Biol 47:R32–R65
    4. Boda-Heggemann J, Lohr F, Wenz F, Flentje M, Guckenberger M (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284-91 CrossRef
    5. Mc Parland NA (2009) kV-cone beam CT as an IGRT tool in the treatment of early stage prostate cancer: a literature review. J Med Imaging Radiat Sci 40(1):9-4 CrossRef
    6. Fung WWK, Wu VWC (2010) Image-guided radiation therapy using computed tomography in radiotherapy. J Radiother Pract 10(02):121-36 CrossRef
    7. Zumsteg Z et al (2011) Image guidance during head-and-neck cancer radiation therapy: analysis of alignment trends with in-room cone-beam computed tomography scans. Int J Radiat Oncol Biol Phys 83(2):712-19
    8. Den RB et al (2010) Daily image guidance with cone-beam computed tomography for head-and-neck cancer intensity-modulated radiotherapy: a prospective study. Int J Radiat Oncol Biol Phys 76(5):1353-359 CrossRef
    9. Yeung AR et al (2009) Tumor localization using cone-beam CT reduces setup margins in conventionally fractionated radiotherapy for lung tumors. Int J Radiat Oncol Biol Phys 74(4):1100-107 CrossRef
    10. Chan M, Yang J, Song Y, Burman C, Chan P, Li S (2011) Evaluation of imaging performance of major image guidance systems. Biomed Imaging Interv J 7(2):e11
    11. Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L (2007) Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys 67(3):924-32 CrossRef
    12. Broderick M, Menezes G, Leech M, Coffey M, Appleyard R (2007) A comparison of kilovoltage and megavoltage cone beam CT in radiotherapy. J Radiother Pract 6(03):173-78 CrossRef
    13. Groh BA, Siewerdsen JH, Drake DG, Wong JW, Jaffray DA (2002) A performance comparison of flat-panel imager-based MV and kV cone-beam CT. Med Phys 29(6):967-75 CrossRef
    14. Gayou O, Miften M (2007) Commissioning and clinical implementation of a mega-voltage cone beam CT system for treatment localization. Med Phys 34(8):3183 CrossRef
    15. Morin O et al (2006) Megavoltage cone-beam CT: system description and clinical applications. Med Dosim 31(1):51-1 CrossRef
    16. Meilinger M, Schmidgunst C, Schütz O, Lang EW (2011) Metal artifact reduction in cone beam computed tomography using forward projected reconstruction information. Z Med Phys 21(3):174-82 CrossRef
    17. Chen J, Morin O, Aubin M, Bucci MK, Chuang CF, Pouliot J (2006) Dose-guided radiation therapy with megavoltage cone-beam CT. Br J Radiol 79:S87–S98 CrossRef
    18. Morin O et al (2007) Dose calculation using megavoltage cone-beam CT. Int J Radiat Oncol Biol Phys 67(4):1201-210 CrossRef
    19. Richter A et al (2008) Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol 3:13 CrossRef
    20. Nijkamp J et al (2008) Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. Int J Radiat Oncol Biol Phys 70(1):75-2 CrossRef
    21. Ding GX et al (2007) A study on adaptive IMRT treatment planning using kV cone-beam CT. Radiother Oncol 85(1):116-25 CrossRef
    22. Morin O et al (2009) Physical performance and image optimization of megavoltage cone-beam CT. Med Phys 36:1421 CrossRef
    23. Gayou O (2012) Influence of acquisition parameters on MV-CBCT image quality. J Appl Clin Med Phys 13(1):1-3
    24. Morin O, Gillis A, Descovich M, Chen J, Aubin M (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34(5):1819-827
    25. Shah A, Aird E, Shekhdar J (2012) Contribution to normal tissue dose from concomitant radiation for two common kV-CBCT systems and one MVCT system used in radiotherapy. Radiother Oncol 105(1):139-44 CrossRef
    26. Ravindran P (2007) Dose optimisation during imaging in radiotherapy. Biomed Imaging Interv J 3(2):e23 CrossRef
    27. Isambert A, Ferreira IH, Nicula LE, Bonniaud G, Lefkopoulos D (2008) Quality control of megavoltage cone beam CT imaging system. Cancer Radiother 12(8):781-87 CrossRef
    28. Beltran C, Lukose R, Gangadharan B, Bani-Hashemi A, Faddegon BA (2009) Image quality & dosimetric property of an investigational imaging beam line MV-CBCT. J Appl Clin Med Phys 10(3):3023 CrossRef
    29. Roberts DA, Hansen VN, Niven AC, Thompson MG, Seco J, Evans PM (2008) A low Z linac and flat panel imager: comparison with the conventional imaging approach. Phys Med Biol 53(22):6305-319 CrossRef
    30. Roberts DA et al (2011) Comparative study of a low-Z cone-beam computed tomography system. Phys Med Biol 56(14):4453-464 CrossRef
    31. Roberts DA et al (2012) Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range. Med Phys 39(3):1218-226 CrossRef
    32. Barton MB, Frommer M, Shafiq J (2006) Role of radiotherapy in cancer control in low-income and middle-income countries. Lancet Oncol 7(7):584-95 CrossRef
    33. Odero D, Shimm D (2009) Third party EPID with IGRT capability retrofitted onto an existing medical linear accelerator. Biomed Imaging Interv J 5(3):e25. doi:10.2349/biij.5.3.e25
    34. Gammex Inc., Gammex 464 Phantom. http://www.gammex.com/n-portfolio/productpage.asp?, (n.d.)
    35. Rezvani N, Aruliah D, Jackson K, Moseley D, Siewerdsen J (2007) OSCaR: an open-source cone-beam CT reconstruction tool for imaging research. Med Phys 34(6):2341
    36. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612-19 CrossRef
    37. Stützel J, Oelfke U, Nill S (2008) A quantitative image quality comparison of four different image guided radiotherapy devices. Radiother Oncol 86(1):20-4 CrossRef
    38. Poludniowski G, Evans PM, Kavanagh A, Webb S (2011) Removal and effects of scatter-glare in cone-beam CT with an amorphous-silicon flat-panel detector. Phys Med Biol 56(6):1837-851 CrossRef
    39. Mosleh-Shirazi MA, Evans PM, Swindell W, Webb S, Partridge M (1998) A cone-beam megavoltage CT scanner for treatment verification in conformal radiotherapy. Radiother Oncol 48(3):319-28 CrossRef
    40. Mooslechner M, Mitterlechner B, Weichenberger H, Huber S, Sedlmayer F, Deutschmann H (2013) Analysis of a free-running synchronization artifact correction for MV-imaging with aSi:H flat panels. Med Phys 40(3):031906 CrossRef
    41. Cho Y, Moseley DJ, Siewerdsen JH, Jaffray DA (2005) Accurate technique for complete geometric calibration of cone-beam computed tomography systems. Med Phys 32:968 CrossRef
    42. Pouliot J et al (2005) Low-dose megavoltage cone-beam CT for radiation therapy. Int J Radiat Oncol 61(2):552-60 CrossRef
  • 作者单位:Tim Markwell (1) (2)
    Lakshal Perera (1)
    Jamie Trapp (1)
    Andrew Fielding (1)

    1. Science and Engineering Faculty, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
    2. Cancer Care Services, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia
  • ISSN:1879-5447
文摘
In order to increase the accuracy of patient positioning for complex radiotherapy treatments various 3D imaging techniques have been developed. MegaVoltage Cone Beam CT (MVCBCT) can utilise existing hardware to implement a 3D imaging modality to aid patient positioning. MVCBCT has been investigated using an unmodified Elekta Precise Linac and iView amorphous silicon electronic portal imaging device (EPID). Two methods of delivery and acquisition have been investigated for imaging an anthropomorphic head phantom and quality assurance phantom. Phantom projections were successfully acquired and CT datasets reconstructed using both acquisition methods. Bone, tissue and air were clearly resolvable in both phantoms even with low dose (22?MU) scans. The feasibility of MVCBCT was investigated using a standard linac, amorphous silicon EPID and a combination of a free open source reconstruction toolkit as well as custom in-house software written in Matlab. The resultant image quality has been assessed and presented. Although bone, tissue and air were resolvable in all scans, artifacts are present and scan doses are increased when compared with standard portal imaging. The feasibility of MVCBCT with unmodified Elekta Precise Linac and EPID has been considered as well as the identification of possible areas for future development in artifact correction techniques to further improve image quality.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700