A corotational flat triangular element for large strain analysis of thin shells with application to soft biological tissues
详细信息    查看全文
  • 作者:Federica Caselli (1)
    Paolo Bisegna (1)
  • 关键词:Flat triangular shell element ; Corotational formulation ; Large strains ; Soft biological tissues
  • 刊名:Computational Mechanics
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:54
  • 期:3
  • 页码:847-864
  • 全文大小:3,226 KB
  • 参考文献:1. Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2(3):419鈥?51. doi:10.1002/nme.1620020310 CrossRef
    2. Areias P, Gar莽茫o J, Pires EB, Infante Barbosa J (2011) Exact corotational shell for finite strains and fracture. Comput Mech 48(4):385鈥?06. doi:10.1007/s00466-011-0588-3
    3. Argyris J, Papadrakakis M, Mouroutis ZS (2003) Nonlinear dynamic analysis of shells with the triangular element TRIC. Comput Methods Appl Mech Eng 192(26鈥?7):3005鈥?038. doi:10.1016/S0045-7825(03)00315-3 CrossRef
    4. Auricchio F, Ferrara A, Morganti S (2012) Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data. Ann Solid Struct Mech 4(1鈥?):1鈥?4. doi:10.1007/s12356-012-0028-x CrossRef
    5. Auricchio F, Beirao da Veiga L, Lovadina C, Reali A, Taylor RL, Wriggers P (2013) Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput Mech 52(5):1153鈥?167. doi:10.1007/s00466-013-0869-0
    6. Ausserer MF, Lee SW (1988) An eighteen-node solid element for thin shell analysis. Int J Numer Methods Eng 26(6):1345鈥?364. doi:10.1002/nme.1620260609 CrossRef
    7. Baek S, Gleason RL, Rajagopal KR, Humphrey JD (2007) Theory of small on large: Potential utility in computations of fluid鈥搒olid interactions in arteries. Comput Methods Appl Mech Eng 196(31鈥?2):3070鈥?078. doi:10.1016/j.cma.2006.06.018
    8. Bathe KJ, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner theory and a mixed interpolation. Int J Numer Methods Eng 21(2):367鈥?83. doi:10.1002/nme.1620210213 CrossRef
    9. Batoz JL, Bathe KJ, Ho LW (1980) A study of three-node triangular plate bending elements. Int J Numer Methods Eng 15(12):1771鈥?812. doi:10.1002/nme.1620151205 CrossRef
    10. Battini JM (2007) A modified corotational framework for triangular shell elements. Comput Methods Appl Mech Eng 196(13鈥?6):1905鈥?914. doi:10.1016/j.cma.2006.10.006 CrossRef
    11. Battini JM, Pacoste C (2006) On the choice of the linear element for corotational triangular shells. Comput Methods Appl Mech Eng 195(44鈥?7):6362鈥?377. doi:10.1016/j.cma.2006.01.007 CrossRef
    12. Bischoff M, Wall WA, Bletzinger KU, Ramm E (2004) Models and finite elements for thin-walled structures. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of Computational Mechanics, vol. 2: Solids and Structures. Wiley, Chichester
    13. Bucalem ML, Bathe KJ (1997) Finite element analysis of shell structures. Arch Comput Method Eng 4(1):3鈥?1. doi:10.1007/BF02818930 CrossRef
    14. Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505鈥?18. doi:10.1007/s00466-003-0458-8 CrossRef
    15. Caselli F (2013) Polar decomposition based corotational framework for nonlinear analysis of hyperelastic shell structures with application to biomechanics. PhD thesis, Department of Civil Engineering and Computer Science, University of Rome 鈥淭or Vergata鈥?/span>
    16. Caselli F, Bisegna P (2013) Polar decomposition based corotational framework for triangular shell elements with distributed loads. Int J Numer Methods Eng 95(6):499鈥?28. doi:10.1002/nme.4528 CrossRef
    17. Crisfield MA (1997) Non-linear finite element analysis of solids and structures vol. 2: Advanced topics. Wiley, Chichester
    18. Darilmaz K, Kumbasar N (2006) An 8-node assumed stress hybrid element for analysis of shells. Comput Struct 84(29鈥?0):1990鈥?000. doi:10.1016/j.compstruc.2006.08.003 CrossRef
    19. Dassault Syst猫mes, Waltham, MA 02451鈥擴nited States: ABAQUS Benchmarks Manual. Version 6.5
    20. Dvorkin EN, Pantuso D, Repetto EA (1995) A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput Methods Appl Mech Eng 125(1鈥?):17鈥?0. doi:10.1016/0045-7825(95)00767-U CrossRef
    21. Felippa CA (2003) A study of optimal membrane triangles with drilling freedoms. Comput Methods Appl Mech Eng 192(16鈥?8):2125鈥?168. doi:10.1016/S0045-7825(03)00253-6 CrossRef
    22. Felippa CA, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Eng 194(21鈥?4):2285鈥?335. doi:10.1016/j.cma.2004.07.035 CrossRef
    23. Flores FG (2013) A 鈥淧rism鈥?solid element for large strain shell analysis. Comput Methods Appl Mech Eng 253:274鈥?86. doi:10.1016/j.cma.2012.10.001 CrossRef
    24. Gal E, Levy R (2006) Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element. Arch Comput Method Eng 13(3):331鈥?88. doi:10.1007/BF02736397 CrossRef
    25. Garcea G, Madeo A, Zagari G, Casciaro R (2009) Asymptotic post-buckling FEM analysis using corotational formulation. Int J Solids Struct 46(2):377鈥?97. doi:10.1016/j.ijsolstr.2008.08.038 CrossRef
    26. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of the layer-specific mechanical properties of human coronary arteries with non-atherosclerotic intimal thickening and related constitutive modelling. Am J Physiol Heart Circ Physiol 289(5):H2048鈥揌2058. doi:10.1152/ajpheart.00934.2004
    27. Hughes TJR, Carnoy E (1983) Nonlinear finite element shell formulation accounting for large membrane strains. Comput Methods Appl Mech Eng 39(1):69鈥?2. doi:10.1016/0045-7825(83)90074-9 CrossRef
    28. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York CrossRef
    29. Ibrahimbegovic A (1997) Stress resultant geometrically exact shell theory for finite rotations and its finite element implementation. Appl Mech Rev 50(4):199鈥?26. doi:10.1115/1.3101701 CrossRef
    30. Ibrahimbegovic A, Taylor RL (2002) On the role of frame-invariance in structural mechanics models at finite rotations. Comput Methods Appl Mech Eng 191(45):5159鈥?176. doi:10.1016/S0045-7825(02)00442-5 CrossRef
    31. Jeleni膰 G, Crisfield MA (1999) Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput Methods Appl Mech Eng 171(1鈥?):141鈥?71. doi:10.1016/S0045-7825(98)00249-7 CrossRef
    32. Khosravi K, Ganesan R, Sedaghati R (2008) An efficient facet shell element for corotational nonlinear analysis of thin and moderately thick laminated composite structures. Comput Struct 86(9):850鈥?58. doi:10.1016/j.compstruc.2007.04.010 CrossRef
    33. Kim DN, Bathe KJ (2009) A triangular six-node shell element. Comput Struct 87(23鈥?4):1451鈥?460. doi:10.1016/j.compstruc.2009.05.002 CrossRef
    34. Lee PS, Noh HC, Bathe KJ (2007) Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns. Comput Struct 85(7鈥?):404鈥?18. doi:10.1016/j.compstruc.2006.10.006 CrossRef
    35. Moita GF, Crisfield MA (1996) A finite element formulation for 3-D continua using the co-rotational technique. Int J Numer Methods Eng 39(22):3775鈥?792. doi:10.1002/(SICI)1097-0207(19961130)39:22<3775::AID-NME23>3.0.CO;2-W
    36. NourOmid B, Rankin CC (1991) Finite rotation analysis and consistent linearisation using projectors. Comput Methods Appl Mech Eng 93(3):353鈥?84. doi:10.1016/0045-7825(91)90248-5 CrossRef
    37. Oden JT (1972) Finite elements of nonlinear continua. McGraw-Hill, New York
    38. Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: A geometrically exact finite element approach. Int J Numer Methods Eng 78(9):1094鈥?112. doi:10.1002/nme.2528 CrossRef
    39. Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modelling and finite element implementation. Int J Numer Methods Eng 71(8):987鈥?008. doi:10.1002/nme.1983 CrossRef
    40. Ramm E (1977) A plate/shell element for large deflections and rotations. In: Bathe K, Oden JT, Wunderlich W (eds) Formulations and computational algorithms in finite element analysis. MIT Press, Cambridge
    41. Rankin CC (2006) Application of linear finite elements to finite strain using corotation. In: AIAA paper No AIAA-2006-1751, 47th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island
    42. Reese S (2007) A large deformation solid-shell concept based on reduced integration with hourglass stabilization. Int J Numer Methods Eng 69(8):1671鈥?716. doi:10.1002/nme.1827 CrossRef
    43. Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Methods Eng 48(1):79鈥?09. doi:10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
    44. Schwarze M, Reese S (2011) A reduced integration solid-shell finite element based on the EAS and the ANS concept鈥揕arge deformation problems. Int J Numer Methods Eng 85(3):289鈥?29. doi:10.1002/nme.2966
    45. Simo JC, Fox DD (1989) On stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng 72(3):267鈥?04. doi:10.1016/0045-7825(89)90002-9
    46. Spurrier RA (1978) Comment on 鈥淪ingularity-free extraction of a quaternion from a direction-cosine matrix鈥? J Spacecr Rockets 15(4):255鈥?55. doi:10.2514/3.57311 CrossRef
    47. Stradins P, Lacis R, Ozolanta I, Purina B, Ose V, Feldmane L, Kasyanov V (2004) Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardiothorac Surg 26(3):634鈥?39. doi:10.1016/j.ejcts.2004.05.043 CrossRef
    48. Sussman T, Bathe KJ (2013) 3D-shell elements for structures in large strains. Cumput Struct 122:2鈥?2. doi:10.1016/j.compstruc.2012.12.018 CrossRef
    49. Sze KY, Chan WK, Pian THH (2002) An eight-node hybrid-stress solid-shell element for geometric non-linear analysis of elastic shells. Int J Numer Methods Eng 55(7):853鈥?78. doi:10.1002/nme.535 CrossRef
    50. Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem Anal Des 40(11):1551鈥?569. doi:10.1016/j.finel.2003.11.001 CrossRef
    51. Sze KY, Zheng SJ (1999) A hybrid stress nine-node degenerated shell element for geometric nonlinear analysis. Comput Mech 23(5鈥?):448鈥?56. doi:10.1007/s004660050424 CrossRef
    52. Treloar LRG (1944) Stress鈥搒train data for vulcanised rubber under various types of deformation. Trans Faraday Soc 40:59鈥?0. doi:10.1039/TF9444000059 CrossRef
    53. Turner MJ, Clough RW, Martin HC, Topp LJ (1956) Stiffness and deflection analysis of complex structures. J Aeronaut Sci 23(9):805鈥?24 CrossRef
    54. Weinberg EJ, Mofrad MRK (2007) A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J Biomech 40(3):705鈥?11. doi:10.1016/j.jbiomech.2006.01.003 CrossRef
    55. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin
    56. Yagawa G, Miyamura T (2005) Three-node triangular shell element using mixed formulation and its implementation by free mesh method. Comput Struct 83(25鈥?6):2066鈥?076. doi:10.1016/j.compstruc.2005.03.013 CrossRef
    57. Yang HTY, Saigal S, Masud A, Kapania RK (2000) A survey of recent shell finite elements. Int J Numer Methods Eng 17(1鈥?):101鈥?27. doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
    58. Zhang Y, Zhou H, Li J, Feng W, Li D (2011) A 3-node flat triangular shell element with corner drilling freedoms and transverse shear correction. Int J Numer Methods Eng 86(12):1413鈥?434. doi:10.1002/nme.3109 CrossRef
    59. Zhang YX, Kim KS (2005) Linear and geometrically nonlinear analysis of plates and shells by a new refined non-conforming triangular plate/shell element. Comput Mech 36(5):331鈥?42. doi:10.1007/s00466-004-0625-6 CrossRef
    60. Zhou YX, Sze KY (2012) A geometric nonlinear rotation-free triangle and its application to drape simulation. Int J Numer Methods Eng 89(4):509鈥?36. doi:10.1002/nme.3250 CrossRef
    61. Zienkiewicz OC, Taylor RL (2005) The finite element method, 6th edn. Elsevier, Butterworth-Heinemann, Oxford
  • 作者单位:Federica Caselli (1)
    Paolo Bisegna (1)

    1. Department of Civil Engineering and Computer Science, University of Rome 鈥淭or Vergata鈥? 00133聽, Rome, Italy
  • ISSN:1432-0924
文摘
A flat triangular element for the nonlinear analysis of thin shells is presented. The formulation relies on (i) a polar decomposition based corotational framework and (ii) a core-element kinematic description adopting the multiplicative superposition of membrane and bending actions. The resulting element is a refined yet simple three-node displacement-based triangle accounting for thickness extensibility and initial shell curvature, and equipped with a fully consistent tangent stiffness. Numerical tests involving shell structures made of rubber-like materials or fibred biological tissues show the effectiveness of the proposed element and its suitability to problems characterized by large displacements, large rotations, large membrane strains and bending. A Matlab toolkit implementing the present formulation is provided as supplementary material.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700