A possible pathophysiological role of tyrosine hydroxylase in Parkinson’s disease suggested by postmortem brain biochemistry: a contribution for the special 70th birthday symposium in honor of Prof. Peter Riederer
详细信息    查看全文
  • 作者:Akira Nakashima (1)
    Akira Ota (1)
    Yoko S. Kaneko (1)
    Keiji Mori (1)
    Hiroshi Nagasaki (1)
    Toshiharu Nagatsu (2)
  • 关键词:Parkinson’s disease ; Tyrosine hydroxylase ; Homo ; specific activity ; Human tyrosine hydroxylase isoforms ; Postmortem brain ; Striatum
  • 刊名:Journal of Neural Transmission
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:120
  • 期:1
  • 页码:49-54
  • 全文大小:223KB
  • 参考文献:1. Baptista MJ, O’Farrell C, Days S, Ahmad R, Miller DW, Hardy J, Farrer MJ, Cookson MR (2003) Coordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J Neurochem 85:957-68 CrossRef
    2. Bisaglia M, Soriano ME, Arduini I, Mammi S, Bubacco L (2010) Molecular characterization of dopamine-derived quinones reacting toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease. Biochim Biophys Acta 1802:699-06 CrossRef
    3. Bonifati V (2012) Autosomal recessive parkinsonism. Parkinsonism Relat Disord 18S1, S4–S6
    4. Carlsson A (1959) The occurrence, distribution and physiological role of dopamine in the nervous system. Pharmacol Rev 11:490-93
    5. D?skeland AP, Flatmark T (2002) Ubiquitination of soluble and membrane bound tyrosine hydroxylase and degradation of the soluble form. Eur J Biochem 269:1561-569 CrossRef
    6. Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-HYdroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des Extrapyramidaren Systems. Klin Wochenschr 38:1236-239 CrossRef
    7. Foley P, Mizuno Y, Nagatsu T, Sano A, Youdim MBH, McGeer P, McGeer P, Riederer P (2000) The L-dopa story—an early Japanese contribution. Parkinsonism Relat Disord 6:1- CrossRef
    8. Gao N, Li YH, Li X, Yu S, Fu GL, Chen B (2007) Effect of α-synuclein on the promoter activity of tyrosine hydroxylase gene. Neurosci Bull 23:53-7 CrossRef
    9. Gasser T, Hardy J, Mizuno Y (2011) Milestones in PD genetics. Mov Disord 26:1042-048 CrossRef
    10. Goldstein DS, Holmes C, Cannon RO, Eisenhofer G, Kopin IJ (1997) Sympathetic cardioneuropathy in dysautonomias. New Engl J Med 336:692-02 CrossRef
    11. Grima B, Lamouroux A, Boni C, Julian J-F, Javoy-Agid F, Mallet J (1987) A single human gene encoding multiple tyrosine hydroxylase with different predicted functional characteristics. Nature 326:707-11 CrossRef
    12. Hattori N (2012) Autosomal dominant parkinsonism: its etiologies and differential diagnoses. Parkinsonism Relat Disord 18S1:S1–S3
    13. Ichinose H, Ohye T, Fujita K, Yoshida M, Ueda S, Nagatsu T (1993) Increased heterogeneity of tyrosine hydroxylase in humans. Biochem Biophys Res Commun 195:158-65 CrossRef
    14. Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994) Quantitation of mRNA of tyrosine hydroxylase and aromatic amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm 8:149-58 (P–D Sect) CrossRef
    15. Itagaki C, Isobe T, Taoka M, Natsume T, Nomura N, Horigome T, Omura S, Ichinose H, Nagatsu T, Greene LA, Ishimura T (1999) Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry 38:15673-5680 CrossRef
    16. Kaneda N, Kobayashi K, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1987) Isolation of a novel cDNA clone for human tyrosine hydroxylase: alternative RNA splicing produces four kinds of mRNA from a single gene. Biochem Biophys Res Commun 146:971-75 CrossRef
    17. Kobayashi K, Nagatsu T (2005) Molecular genetics of tyrosine 3-monooxygenase and inherited diseases. Biochem Biophys Res Commun 338:267-70 CrossRef
    18. Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem 103:907-12
    19. Kvetnansky R, Sabban EL, Palkovits M (2009) Catecholamine systems in stress: structural and molecular approaches. Physiol Rev 89:535-06 CrossRef
    20. Lehman IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281:17644-7651 CrossRef
    21. Lesage S, Brice A (2012) Role of Mendelian genes in “sporadic-Parkinson’s disease. Parkinsonism Relat Disord 18S1:S66–S70 CrossRef
    22. Lopez Verrilli MA, Pirola CJ, Pascual MM, Dominici FP, Turyn D, Gironacci MM (2009) Angiotensin-(1-) through AT receptors mediates tyrosine hydroxylase degradation via the ubiquitin-proteasome pathway. J Neurochem 109:326-35 CrossRef
    23. Mazzuli JR, Mishizen AJ, Giasson BI, Lynch DR, Thomas SA, Nakashima A, Nagatsu T, Ota A, Ischiropoulos H (2006) Cytosolic catecholamines inhibit α-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 26:10068-0078 CrossRef
    24. McGeer EG, McGeer PL (2007) The role of inflammatory agents in Parkinson’s disease. CNS Drugs 21:789-97 CrossRef
    25. McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s disease and Alzheimer’s disease brain. Neurology 38:1285-291 CrossRef
    26. McNaught KS, Jackson T, JnoBaptiste R, Kapustin A, Olanow CW (2006) Proteasomal dysfunction in sporadic Parkinson disease. Neurology 66:S37–S49 CrossRef
    27. Mizuno Y, Hattori N, Yoshino H, Hatano Y, Satoh K, Tomiyama H, Li Y (2006) Progress in familial Parkinson’s disease. J Neural Transm Suppl 70:191-04 CrossRef
    28. Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Nagatsu T (1988a) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brain. J Neural Transm 72:77-1 CrossRef
    29. Mogi M, Harada M, Kojima K, Inagaki H, Kondo T, Narabayashi H, Arai R, Fujita K, Kiuchi K, Nagatsu T (1988b) Sandwich enzyme immunoassay of dopamine-β-hydroxylase in cerebrospinal fluid from control and parkinsonian patients. Neurochem Int 12:187-91 CrossRef
    30. Nagatsu T (1977) Dopamine-β-hydroxylase in blood and cerebrospinal fluid. Trends Biochem Sci 2:217-19 CrossRef
    31. Nagatsu T (1991) Genes for human catecholamine synthesizing enzymes. Neurosci Res 12:315-45 CrossRef
    32. Nagatsu T (1995) Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem 30:15-5
    33. Nagatsu T (2006) The catecholamine system in health and disease: relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad B Phys Biol Sci 82:388-15 CrossRef
    34. Nagatsu T, Sawada M (2005) Inflammatory process in Parkinson’s disease: role for cytokines. Curr Pharm Des 11:999-016 CrossRef
    35. Nagatsu T, Sawada M (2006) Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol 26:779-00 CrossRef
    36. Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl 72:113-20 CrossRef
    37. Nagatsu T, Stj?rne L (1995) Catecholamine synthesis and release. Overv Adv Pharmacol 42:1-4 CrossRef
    38. Nagatsu T, Kato T, Numata (Sudo) Y, Ikuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine / N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75:221-32 CrossRef
    39. Nagatsu T, Mogi M, Ichinose H, Togari A, Riederer P (1999) Cytokines in Parkinson’s disease. Neurosci News 2:88-0
    40. Nakashima A (2010) Proteasomal degradation of tyrosine hydroxylase and neurodegeneration. J Neurochem 120:199-01 CrossRef
    41. Nakashima A, Mori K, Kaneko YS, Hayashi N, Nagatsu T, Ota A (2011) Phosphorylation of the N-terminal portion of tyrosine hydroxylase triggers proteasomal digestion of the enzyme. Biochem Biophys Res Commun 407:343-47 CrossRef
    42. O’Malley KL, Anhalt MJ, Martin BM, Kelsoe JR, Winfield SL, Ginns EI (1987) Isolation and characterisation of the human tyrosine hydroxylase gene: identification of 5-alternative sites responsible for multiple mRNAs. Biochimistry 26:6910-914 CrossRef
    43. Ohye T, Ichinose H, Ogawa M, Yoshida M, Nagatsu T (1995) Alterations in multiple tyrosine hydroxylase mRNAs in the substantia nigra, locus coeruleus and adrenal gland of MPTP-treated parkinsonian monkeys. Neurodegeneration 4:81-5 CrossRef
    44. Peng X, Tehranian R, Dietrich P, Stefanis L, Perez RG (2005) α-Synuclein activation of protein phosphatase 2A reduces tyrosine hydroxylase phosphorylation in dopamine cells. J Cell Sci 118:3523-530 CrossRef
    45. Perez RG, Waymire JC, Lin E, Liu JJ, Gao F, Zigmond MJ (2002) A role for α-synuclein in the regulation of dopamine biosynthesis. J Neurosci 22:3090-099
    46. Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Tyrosine hydroxylase activity in caudate nucleus from Parkinson’s disease: effects of iron and phosphorylating agents. J Neurochem 50:202-08 CrossRef
    47. Riederer P, Reichmann H, Janetzky K-P, Sian J, Lesch K-P, Lange KW, Double KL, Nagatsu T, Gerlach M (2001) Neural degeneration in Parkinson’s disease. In: Calne D, Calne S (eds) Parkinson’s disease: Adv Neurol 86. Lippincott Wiliams & Wilkins, Philadelphia, pp 125-36
    48. Sandal C, Fujioka S, Uitti RJ, Wszolek K (2012) Autosomal dominant Parkinson’s disease. Parkinsonism Relat Disord 18S1, S57–S10
    49. Shi X, Habecker BA (2011) gp130 cytokines stimulate proteasomal degradation of tyrosine hydroxylase via extracellular signal regulated kinase 1 and 2. J Neurochem 120:239-47 CrossRef
    50. Suzanne L, Brice A (2012) Role of Mendelian genes in “sporadic-Parkinson’s disease. Parkinsonism Relat Disord 18S1:S66–S70
    51. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510-18 CrossRef
    52. Ugrumov MV, Khaindrava VG, Kozina EA, Kucheryanu VG, Bocharov EV, Kryzhanovsky GN, Kudrin VS, Narkevich VB, Klodt PM, Rayevsky KS, Pronina TS (2011) Modeling of presynaptic and symptomatic stages of Parkinsonism in mice. Neuroscience 181:175-88 CrossRef
    53. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2011) α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 33:559-68 CrossRef
    54. Xu J, Kao SY, Lee FJ, Song W, Jin LW, Yankner BA (2002) Dopamine-dependent neurotoxicity of α-synuclein: a mechanism for selective neurodegeneration in Parkinson’s disease. Nat Med 8:600-06 CrossRef
  • 作者单位:Akira Nakashima (1)
    Akira Ota (1)
    Yoko S. Kaneko (1)
    Keiji Mori (1)
    Hiroshi Nagasaki (1)
    Toshiharu Nagatsu (2)

    1. Department of Physiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
    2. Department of Pharmacology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
  • ISSN:1435-1463
文摘
Postmortem brain biochemistry has revealed that the main symptom of movement disorder in Parkinson’s disease (PD) is caused by a deficiency in dopamine (DA) at the nerve terminals of degenerating nigro-striatal DA neurons in the striatum. Since tyrosine hydroxylase (TH) is the rate-limiting enzyme for the biosynthesis of DA, TH may play an important role in the disease process of PD. DA regulated by TH activity is thought to interact with α-synuclein protein, which results in intracellular aggregates called Lewy bodies and causes apoptotic cell death during the aging process. Human TH has several isoforms produced by alternative mRNA splicing, which may affect activation by phosphorylation of serine residues in the N-terminus of TH. The activity and protein level of TH are decreased to cause DA deficiency in the striatum in PD. However, the homo-specific activity (activity/enzyme protein) of TH is increased. This increase in TH homo-specific activity suggests activation by increased phosphorylation at the N-terminus of the TH protein for a compensatory increase in DA synthesis. We recently found that phosphorylation of the N-terminal portion of TH triggers proteasomal degradation of the enzyme to increase TH turnover. We propose a hypothesis that this compensatory activation of TH by phosphorylation in the remaining DA neurons may contribute to a further decrease in TH protein and activity in DA neurons in PD, causing a vicious circle of decreasing TH activity, protein level and DA contents. Furthermore, increased TH homo-specific activity leading to an increase in DA may cause toxic reactive oxygen species in the neurons to promote neurodegeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700