Dectin-2-dependent host defense in mice infected with serotype 3 Streptococcus pneumoniae
详细信息    查看全文
  • 作者:Yukiko Akahori ; Tomomitsu Miyasaka ; Masahiko Toyama ; Ikumi Matsumoto…
  • 关键词:Streptococcus pneumonia ; Dectin ; 2 ; Neutrophils ; Anti ; capsular polysaccharide IgG ; IFN ; γ
  • 刊名:BMC Immunology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:17
  • 期:1
  • 全文大小:1,086 KB
  • 参考文献:1.Janssens JP, Krause KH. Pneumonia in the very old. Lancet Infect Dis. 2004;4:112–24.PubMed CrossRef
    2.Gant V, Parton S. Community-acquired pneumonia. Curr Opin Pulm Med. 2000;6:226–33.PubMed CrossRef
    3.Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223.PubMed PubMedCentral CrossRef
    4.Briles DE, Claflin JL, Schroer K, Forman C. Mouse Igg3 antibodies are highly protective against infection with Streptococcus pneumoniae. Nature. 1981;294:88–90.PubMed CrossRef
    5.Miyasaka T, Akahori Y, Toyama M, Miyamura N, Ishii K, Saijo S, et al. Dectin-2-dependent NKT cell activation and serotype-specific antibody production in mice immunized with pneumococcal polysaccharide vaccine. PLoS One. 2013;8:e78611. doi:10.​1371/​journal.​pone.​0078611 .PubMed PubMedCentral CrossRef
    6.Dallaire F, Ouellet N, Bergeron Y, Turmel V, Gauthier MC, Simard M, et al. Microbiological and inflammatory factors associated with the development of pneumococcal pneumonia. J Infect Dis. 2001;184:292–300.PubMed CrossRef
    7.Saijo S, Ikeda S, Yamabe K, Kakuta S, Ishigame H, Akitsu A, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32:681–91.PubMed CrossRef
    8.Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, et al. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem. 2006;281:38854–66.PubMed CrossRef
    9.Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem. 2003;278:1910–4.PubMed CrossRef
    10.Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.PubMed PubMedCentral CrossRef
    11.Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.PubMed CrossRef
    12.Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008;38:2636–49.PubMed CrossRef
    13.Yamamoto N, Kawakami K, Kinjo Y, Miyagi K, Kinjo T, Uezu K, et al. Essential role for the p40 subunit of interleukin-12 in neutrophil-mediated early host defense against pulmonary infection with Streptococcus pneumoniae: involvement of interferon-gamma. Microbes Infect. 2004;6:1241–9.PubMed CrossRef
    14.Sun K, Salmon SL, Lotz SA, Metzger DW. Interleukin-12 promotes gamma interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect Immun. 2007;75:1196–202.PubMed PubMedCentral CrossRef
    15.Rubins JB, Pomeroy C. Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect Immun. 1997;65:2975–7.PubMed PubMedCentral
    16.Musher D, Cohen M, Baker C. Immune responses to extracellular bacteria. In: Rich RR, Fleisher TA, Schwartz BD, Shearer WT, Strober W, editors. Clinical immunology, Principles and Practice. St, Louis: Mosby-Year Book; 1996. p. 479–502.
    17.Romero-Steiner S, Musher DM, Cetron MS, Pais LB, Groover JE, Fiore AE, et al. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin Infect Dis. 1999;29:281–8.PubMed CrossRef
    18.Perlmutter RM, Hansburg D, Briles DE, Nicolotti RA, Davie JM. Subclass restriction of murine anti-carbohydrate antibodies. J Immunol. 1978;121:566–72.PubMed
    19.Dessing MC, Schouten M, Draing C, Levi M, von Aulock S, van der Poll T. Role played by Toll-like receptors 2 and 4 in lipoteichoic acid-induced lung inflammation and coagulation. J Infect Dis. 2008;197:245–52.PubMed CrossRef
    20.Dessing MC, Hirst RA, de Vos AF, van der Poll T. Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice. PLoS One. 2009;4:e7993. doi:10.​1371/​journal.​pone.​0007993 .PubMed PubMedCentral CrossRef
    21.Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis. 2002;186:798–806.PubMed CrossRef
    22.Albiger B, Dahlberg S, Sandgren A, Wartha F, Beiter K, Katsuragi H, et al. Toll-like receptor 9 acts at an early stage in host defense against pneumococcal infection. Cell Microbiol. 2007;9:633–44.PubMed CrossRef
    23.Austrian R, Gold J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med. 1964;60:759–76.PubMed CrossRef
    24.Usinger WR, Lucas AH. Avidity as a determinant of the protective efficacy of human antibodies to pneumococcal capsular polysaccharides. Infect Immun. 1999;67:2366–70.PubMed PubMedCentral
    25.Tian H, Weber S, Thorkildson P, Kozel TR, Pirofski LA. Efficacy of opsonic and nonopsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibodies against intranasal challenge with Streptococcus pneumoniae in mice. Infect Immun. 2009;77:1502–13.PubMed PubMedCentral CrossRef
    26.Mond JJ, Lees A, Snapper CM. T cell-independent antigens type 2. Annu Rev Immunol. 1995;13:655–92.PubMed CrossRef
    27.Shriner AK, Liu H, Sun G, Guimond M, Alugupalli KR. IL-7-dependent B lymphocytes are essential for the anti-polysaccharide response and protective immunity to Streptococcus pneumoniae. J Immunol. 2010;185:525–31.PubMed CrossRef
    28.Kobrynski LJ, Sousa AO, Nahmias AJ, Lee FK. Cutting edge: antibody production to pneumococcal polysaccharides requires CD1 molecules and CD8+ T cells. J Immunol. 2005;174:1787–90.PubMed CrossRef
    29.Verbinnen B, Covens K, Moens L, Meyts I, Bossuyt X. Human CD20 + CD43 + CD27+ CD5- B cells generate antibodies to capsular polysaccharides of Streptococcus pneumoniae. J Allergy Clin Immunol. 2012;130:272–5.PubMed CrossRef
    30.Haas KM, Poe JC, Steeber DA, Tedder TF. B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity. 2005;23:7–18.PubMed CrossRef
    31.Snapper CM, McIntyre TM, Mandler R, Pecanha LM, Finkelman FD, Lees A, et al. Induction of IgG3 secretion by interferon gamma: a model for T cell-independent class switching in response to T cell-independent type 2 antigens. J Exp Med. 1992;175:1367–71.PubMed CrossRef
    32.Marchi LF, Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Mantovani B. In vitro activation of mouse neutrophils by recombinant human interferon-gamma: increased phagocytosis and release of reactive oxygen species and pro-inflammatory cytokines. Int Immunopharmacol. 2014;18:228–35.PubMed CrossRef
    33.Lee RT, Hsu TL, Huang SK, Hsieh SL, Wong CH, Lee YC. Survey of immune-related, mannose/fucose-binding C-type lectin receptors reveals widely divergent sugar-binding specificities. Glycobiology. 2011;21:512–20.PubMed PubMedCentral CrossRef
    34.Kennedy JF, Rosevear A. An assessment of the fractionation of carbohydrates on concanavalin A-sepharose 4B by affinity chromatography. J Chem Soc Perkin 1. 1973;19:2041–6.PubMed CrossRef
    35.Zamze S, Martinez-Pomares L, Jones H, Taylor PR, Stillion RJ, Gordon S, et al. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem. 2002;277:41613–23.PubMed CrossRef
    36.McGreal EP, Rosas M, Brown GD, Zamze S, Wong SY, Gordon S, et al. The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology. 2006;16:422–30.PubMed CrossRef
    37.Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C, Uezu K, et al. Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol. 2003;33:3322–30.PubMed CrossRef
    38.Kawakami K, Kohno S, Morikawa N, Kadota J, Saito A, Hara K. Activation of macrophages and expansion of specific T lymphocytes in the lungs of mice intratracheally inoculated with Cryptococcus neoformans. Clin Exp Immunol. 1994;96:230–7.PubMed PubMedCentral CrossRef
  • 作者单位:Yukiko Akahori (1) (5)
    Tomomitsu Miyasaka (1) (6)
    Masahiko Toyama (1) (7)
    Ikumi Matsumoto (1)
    Anna Miyahara (1)
    Tong Zong (1)
    Keiko Ishii (1)
    Yuki Kinjo (2)
    Yoshitsugu Miyazaki (2)
    Shinobu Saijo (3)
    Yoichiro Iwakura (4)
    Kazuyoshi Kawakami (1)

    1. Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Miyagi, Japan
    5. Present address: Japanese Red Cross Society, Tokyo, Japan
    6. Present address: Department of Pathophysiology, Tohoku Pharmaceutical University, Miyagi, Japan
    7. Present address: Ibaraki Prefectural Hospital, Ibaraki, Japan
    2. Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
    3. Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
    4. Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
  • 刊物主题:Immunology; Allergology; Vaccine; Cytokines and Growth Factors;
  • 出版者:BioMed Central
  • ISSN:1471-2172
文摘
Background Streptococcus pneumoniae, a major causative bacterial pathogen of community-acquired pneumonia, possesses a thick polysaccharide capsule. Host defense against this bacterium is mediated by activation of innate immune cells that sense bacterial components. Recently, C-type lectin receptors (CLRs) have garnered much attention in elucidating the recognition mechanism of pathogen-derived polysaccharides.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700