A hidden Markov model for decoding and the analysis of replay in spike trains
详细信息    查看全文
文摘
We present a hidden Markov model that describes variation in an animal’s position associated with varying levels of activity in action potential spike trains of individual place cell neurons. The model incorporates a coarse-graining of position, which we find to be a more parsimonious description of the system than other models. We use a sequential Monte Carlo algorithm for Bayesian inference of model parameters, including the state space dimension, and we explain how to estimate position from spike train observations (decoding). We obtain greater accuracy over other methods in the conditions of high temporal resolution and small neuronal sample size. We also present a novel, model-based approach to the study of replay: the expression of spike train activity related to behaviour during times of motionlessness or sleep, thought to be integral to the consolidation of long-term memories. We demonstrate how we can detect the time, information content and compression rate of replay events in simulated and real hippocampal data recorded from rats in two different environments, and verify the correlation between the times of detected replay events and of sharp wave/ripples in the local field potential.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700